S JECEN

LJ‘*«J HML .

P396-143459 ’ kilormation is ouwr businass.

B FRRERIm I m ey
AR
Bl cddialiiiogiog

it

VALIDATICN STRUCTURE B
RODIFICATION AND REUSE

ASED THEQRY OF PLAN

e e T)
—BIETERO TN S RTIMENRT R
—;@p{amwd irl e
‘D?w:'ﬂ%ﬁ:vesﬁmml v ,, o

STANFORD UNIV., CA e

a3 19970821 008

U.S. YEPARTMENT OF COMMERCE
National Technical infcrmation Service DTIC QUALITY INSPECTED & |

BIBLIOGRAPHIC INFORMATION
PB96-148499

Report Nos: STAN-CS-90-1312

Title: Validation Structure Based Theory of Plan Modification and Reuse.
Date: Jun 90

Authors: S. Kambhampati and J. A. Hendler.

Performing Organization: Stanford Univ., CA. Dept. of Computer Science.**Maryland
Univ.. College park. Center for Automation Research.

Sponsoring Organization: *Defense Advanced Research Projects Agency. Arlington.
g%.*fo1ce of Naval Research, Arlington. VA.*National Science Foundation. Washington,
Contract Nos: DACA76-88-C-0008. ONR-N00014-88-K-0620. ONR-N00014-88-K-0560.
NSF-IRT-8907890

NTIS Field/Group Codes: 62 (Computers, Control & Information Theory). 72E (Operations
Research)

Price: PC A04/MF AO1
Availability: Available from the National Technical Information Service. Springfield.

Number of Pages: 56p

Keywords: *Planning..*Revisions. *QOperations research, Hierarchies. Artificial
intertigence, Verifying, Reuse. Specifications. PRIAR system.

pbstract: A framework for the flexible and conservative modification of plans enables
a3 pranner to modify its plans in response to incremental changes in their
specifications. to reuse 1ts existing plans in new problem situations. and to
efficiently replan in response to execution time failures. The authors present a
theory of glan modification applicable to hierarchical nonlinear plann1n?. e
authors’ theory utilizes the validation structure of stored plans to yield a flexible

and conservative plan modification framework .

e 10 Report No. STAN-CS-90-1312
[el

PBUE 148499

[

A Validation Structure Based Theory of
Plan Medification and Reuse

by

Subbarao Kambhampati and James A. Hendler

Department of Computer Science

Stanford University
~ Stanford, California 94305

REPRODUCED BY: NI

U.8 Department of Commerce
Natiorat Tectwic el informatien
Sprngheid,

Form Apgeoved
0213 Mo, 07080183

REPOARAT DOTUNIENTATION PAGE

B

P FOTE TS Dursken 108 TAS LTI Of ©dametiiey @ eeteno g 8 arITe0T | ROUT O FETRRe e, nckding thy e 1oF 7Y WSO, Sy S vy 4302 sonaver, ’

gwrwmvswmwem:m:ﬁcms‘dmmwmmmycfmwmw~m S OUIERIITR AOTIAEYS b:gmz:"mr'w R
cote R”B 148499 P TR Lvr:ﬂn L0 VS E1PrtsTION MESETUETIINE YOrr o, me%ﬂuw%@wmmgﬁ:ﬂ‘_ J;,mm
on P Q. 558 © the Offict Of Monaament 1ug EAT301, PAaameont Saxbornd Prrieet £ 7300105, Varivgon, O T /00

"

”5| 2. REFCAT OAVE 3. REFOAT TYPEL AND CATES COVInED

Enl” m.» G bl

4 VilLE AxD SUBWIE 3. FURCIAG RUMZIRS

A Validation Structure Based Theory of Plan Modificationi..

6. AUTHGR(S)

Subbarao Kambhampati and James A. Hendler

P s i A TP S S,
9. SPONSORING / MORITORING AGERCY NAME(S; ARD AUORESS(ES) 10. SPCUSCRING / MOMITGLNG
DARPA AGENCY REPCRT HUMBIR

8. PEAFOAMING CRGARZATION
REPORT NUMBER

STAN-CS-90-1312

7. PERFORNAING GAGAKIZATION NANE(S) AND ADDRESS{ES)
Computer Science Department

Stanford University
Stanford, CA 94305

N00014-88-K~0560

T ———— S —————————— i v
125, DISTRIBUTION / AVAILAEILITY STATEMENT

13. ABSTRACT (Maxmum 200 words)

11. SUPPLEMENTARY NOTES

12b. DiSTRISUTION CODE

Unlimited

A framework for the flexible and conservative modification of plans enables a
planner to modify its plans in response to incremental changes in their specificationa
to reuse its existing plans in new problem situations, and to efficiently replan in @
response to execution time failures. We present a theory of plan modification ap-
plicable to hierarchical nonlinear planning. Our theory utilizes the validaticn
structure of stored plans to yield a flexible and conservative plan modification

framewvork.

14. SURJECT TERRIS

17. SECURITY CLASSIFICATION
OF agroatT

O AR
18. SECURITY CLGA‘SW?IGM

OF THIS PA

= T a——
19. SECURITY CLASSWICATION
OF ABSTRALT

unlimited

NSN 7540-01-280-5500

Prescroeg by ANSI St 209-'8

Standard Form 298 (Rev. 2.89)

"

ey

A Validation Structure Based Theory of Plan Modification and Reuse’

Subbarao Kambhampati

Center for Design Research and Department of Computer Science
Stanford University
Bldg. 530, Duena Street
Stanford CA 943054026
email: rac@sunrise.stanford.edu

James A. Hendler

Computer Science Department
University of Maryland
College Park, MD 20742

Abstract

A framswork for the flexible and conservative modification of plans enables a planner to
modify its plans in response to incremental changes in their specifications, to reuse its cxisting
plans in new problem situations, and to efficiently replan in response to execution time failures.
We present a theory of plan modification applicable to hierarchical nonlinear planning. Our
theory utilizes the validation structure of stored plans to yield a flexible and conservative plan
modification framework. The validation structure, which constitutes a hierarchical explanation
of correctness of the plan with respect to the planner’s own knowledge of the domain, is anno-
tated on the plan as a by-product of initial planning. Plan modification is formalized as a pro-
cess of removing inconsistencies in the validation structure of a plan when it is being reused in
a new (changed) planning situation. The repair of these inconsistencies involves removing
unnecessary parts of the plan and adding new non-primitive tasks to the plan to establish miss-
ing or failing validations. The resultant partially reduced plan (with a consistent validation
structure) is sent to the planner for complete reduction. We discuss the development of this
theory in the PRIAR system, present an empirical evaluation of this theory, and characterize its
completeness, coverage, efficiency and limitations.

* The support of the Defense Advanced Research Projects Agency and the U.S. Army Engineer Topographic
Laboratories under contract DACA76-88-C-0008 (to the University of Maryland Center for Automation Research),
and that of Office of Naval Research under contract N00014-88-K-0620 (to Stanford University Center for Design
Research), and the Washington D.C. Chapter of A.CM. through the ‘1988 Samuel N. Alexander A.CM. Doc-
toral Fellowship Grant™*. Partial support for this research also came from ONR grant N00014-88-K-0560 and NSF
grant [RI-8907890, the Systems Research Center and UM Institute for Advanced Studies.

PROTECTED UNDER INTERNATIONAL COPYRIGHT

ALL RIGHTS RESERVED.
NATIONAL TECHNICAL INFORMATION SERVICE
U.S. DEPARTMENT OF COMMERCE ;

DTIC QUALITY [ISPECTED 3

-

rad

1. Introduction

The ability to incrementally modify existing plans to make them conform to the cornstraints of
a ncw or changed planning situation is very useful in plan reuse (reusing existing plans to
solve new planning pblems), replanning (modifying a current plan in response to executing
time failurcs), and incremental planning (updating a plan in response to evolving specifications
during interactive planning). Two important desidcrata for the plan modification capability are
Hexibility and conservatism. Flexibility is the ability to modify a plan to handle a wide variety
of changes in the spccification. Conservatism is the ability to minimally change the existing
plan to make it fit to the new problem situation. The former is required for effective coverage
of modification, while the latter is needed to ensure efficiency.

While the value of plan modification has been acknowledged early in planning research
{6, 9], the strategies developed were inflexible, in that they could reuse or modify a given plan
in only a limited number of situations, and could deal with only a limited variety of applicabil-
ity failures. There was no general framework for conservatively modifying an existing plan to
fit it to the constraints of a new problem situation. A major shortcoming with these
approaches was that the stored plans did not represent enough information about the intemal
dependencies of the plan to permit flexible modification. For example, reuse based on macro-
operators [6] built from sequences of primitive plan steps was unable to modify intermediate
steps of the macro-operators as the macro-operators did not represent the intermediate deci-
sions and dependencies corresponding to their intenal steps. Even in cases where the need for
the dependency information was recognized (e.g. [5,34]), a systematic representation and utili-
zation of such structures ‘n plan reuse and modification was not attempted.

We present a theory of plan modification that allows flexible and conservative
modification of plans generated by a hierarchical nonlinear planner. Hierarchical planning is a
prominent method of abstraction and least-commitment in domain-independent planning [4).
Our theory of plan modification proposes validation structure as a way of representing the
internal dependencies of a hierarchical plan and provides algorithms for annotating the valida-
tion structure on the plans during plan generation. It systematically explores the utility of the
annotated validation structure in guiding and controlling all the processes involved in flexible
plan reuse and modification. The PRIAR reuse system [15, 16, 17, 14,13, 12] is our implemen-
tation of this theory. This paper presents the plan modification framework used in PRIAR and
evaluates its performance, completeness, coverage, efficiency and limitations.

1.1. Overview of the PRIAR Plan Modification Theory

The plan modification problem that is addressed in PRIAR is the following: Given (i) a
planning problem P" (specified by a partial description of the initial state /* and goal state
G"), (ii) an existing plan R° (generated by a hierarchical nonlinear planner), and the
corresponding planning problem P°, Produce a plan for P* by minimally modifying R®. Fig-
ure 1 shows the schematic overview of the PRIAR plan modification framework.

1

(2) Annotation Verification: The inconsistencies in the validation structure of R' are located,
and appropriatc repairs arc suggested. The repairs include removing parts of R that arc
unneeessary and adding non-primitive tasks (called refit tasks) 1o cstablish any required new
validations. The resulting annotation-verified plan R* will have a consistent validation struc-
turc but is typically only partially reduced. It consists of all the applicable parts of R and
any newly introduced refit tasks.

(3) Refitting: The refit tasks specified during the annotation verification phase constitute sub-
planning problems for the hicrarchical planner. The refitting process involves reducing them
with the help of the planner. Conservatism is ensured during this process through the use of
a heuristic centrol stratcgy which minimizes the disturbance to the applicable parts of R by
estimating the disturbance caused to its validation structure.

Computational savings stem frcm the fact that the complexity of solving the sub-planning
problems during refitting is much less than the complexity of solving the entire planning prob-
lem from scratch. This is supported by the results of the empirical studies in blocks world,
which showed that plan modification provides 20-98% savings (corresponding to speedup fac-
tors of 1.5 to SO) over pure generative planning, with the highest gains shown for the most
complex problems tesied (the details of these studies are provided in section 4.1).

1.2. Comparison to Previous Work

Here we will briefly summarize some broad distinctions between our theory, and the previous
approaches to plan modification; a more detailed discussion of related work appears in section
6 and in [13].

Representations of plan intemal dependency structure have been used by several planners
previously to guide plan modification (e.g., the triangle tables and the macro operators of [6]
and [11]; the decision graphs of [9] and [5]; the plan rationale representation of [34]). How-
ever, our work is the first to systematically characterize the nature of such dependency struc-
tures and their role in plan modification. It subsumes and formalizes the previous approaches,
provides a better coverage of applicability failures, and allows the reuse of a plan in a larger
variety of new planning situations. Unlike the previous approaches, it also explicitly focuses
on the flexibility and conservatism of the plan modification. The modification is fully
integrated with the generative planning, and aims to reduce the average case cost of producing
correct plans. In this sense, PRIAR’S strategies are complementary to the plan debugging stra-
tegies proposed in GORDIUS [27] and CHEF (8], which use an explanation of correctness of the
plan with respect to an external (deeper) domain model—generated through a causal simulation
of the plan to guide the debugging of the plan—to compensate for the inadequacies of the
planner’s own domain model. Similarly, PRIAR's validation structure based approach to plan
modification stands in contrast to approaches which rely on domain dependent heuristic
modification of the plan (e.g. [2,1,22]). Our approach of g:ounding plan modification on vali-
dation structure guarantees the correctness of the modification with respect to planner’s domain

3

modcl and reduces the necd for a costly modify-test-debug type approach.

1.3. Organization of the Paper

The rest of this section introduces some preliminary notation and terminology used throughout
the paper. Scctinn 2 presents the notion of plan validation structure, explains the motivation
behind remembering it along with each generated plan, and develops a scheme for annotating
the plans. Scction 3 develops the basic modification processes, and explains how they utilize
the plan validation structure. In particular, it provides the details of the mapping, annotation
verification and refitting processes and presents an example of plan modification in this frame-
work. It also includes a brief discussion of the control strategies for guiding refitting and
retricval. Section 4 contains an empirical and theoretical analysis of the PRIAR plan
modification theory. It summarizes the results of the empirical evaluation experiments con-
ducted on the implemented system, and discusses the completeness, coverage, flexibility and
efficiency of the modification framework. Section 5 contains a detailed discussion of related
work and section 6 summarizes the research. Appendix A contains an annotated trace of the
PRIAR system solving a problem and Apnendix B contains the specification of the domain used
in the cmpirical evaluation.

1.4. Preliminaries, Notation and Terminology

This paper develops a theory of plan modification in the context of hierarchical nonlinear plan-
ning. Hierarchical nonlinear planning (known also as hierarchical planning) is a prominent
method of abstraction and least commitment in domain independent planning. A good intro-
duction to this methodology can be found in [4). Some well known hierarchical planners
include NOAH [25], NONLIN [30] and SIPE [33). For a review of these and other previous
approaches to planning, see [10].

In hierarchical planning, a partial plan is represented as a task network consisting of high
level tasks (o be carried out. A task network is a set of tasks with partial chronological order-
ing relations among the tasks. Planning involves reducing these high level tasks with the help
of predefined ‘‘task reduction schemas,’’ to successively more concrete subtasks. The task
reducticn schemas are given to the planner a priori as part of the domain specification. The
collection of task networks, at increasing levels of detail showing the development of the plan,
is called the ‘*hierarchical task network’* or **HTN'* of the plan. Planning is considered com-
plete when the all the leaf nodes of the HTN are either primitive tasks (tasks that cannot be
decomposed any further) or phantom goals (tasks that are achieved as side-effects of some
other tasks). The entire tree structure in Figure 2 shows ihe hierarchical plan for a simple
blocks world planning problem. Ir the following, we pfovide formal definitions of some of
these notions, to facilitate the development in the rest of the paper.

§1.1. Partial Plans and Task networks: A partial plan P is represented as a taskvnetwork
and can be formalized [37] as a 3-tuple (T',0 1), where T is a set of tasks, O defines a partial

e SRR S S B e R ST s TR, T TR Lt s

ordering among clements of T, and IT is a sct of conditions aiong with specifications about
where those conditions must hold. Each task T has a set of applicability conditions, denoted
by conditions(T), and a sct of expected cffects, denoted by ef fects (T), where each sct con-
sists of litcrals in first order predicate calculus. Elements of IT are called protection intervals
[4], and arc represented by 3-tuples (E.ty.t0), where tt3 € T, E e effects(t)) and E has to
nec:ssarily persist up to f5.

§1.2. Schemas and Task Reduction: A task reduction schema $ can itself be formalized as a
mini task network template that can be used to replace some task ¢ ¢ T of the plan P, when
certain applicability ccnditions of the schema are satisfied. Satisfving the applicability condi-
tions this way involves adding new protcction intervals to the resultant plan. Thus when the
set of applicability conditions {C;} of an instance §; of a task reduction schema § can be
satisfied at a task ¢ in a partial plan P, then ¢ can be reduced with §;. The reduction, denoted
by S;(¢), is another task network (T, 0, ,I1,). The task ¢ will be linked by 2 parent relation to
each task of T, . The plan P’ resulting from this task reduction is constructed by incorporat-
ing S;(¢) into P. During this incorporation step, some harmful interactions may develop due
to the violation of established protection intervals of P. The planner handles these harmful
interactions either by posting additional partial ordering relations, or by backtracking over
previous planning decisions. When the planner is successful in incorporating S;(¢) into P
and resolving all thz harmful interactions, the resultant plan, P’ can be represented by the task
network P"(TUT,~(z}, 0"V0,U0O;, IT"), where:

(1) O’ is computed by appropriately redirecting the ordering relations involving the reduced

task ¢ to its children

(2) O, are the ordering relations introduced during the interaction resclution false

(3) Finally, the protection intervals IT" is computed by (i) combining IT and I1,, (ii) adding
any protection intervals that were newly established to sﬁppon the applicability conditions
of the schema instance §; and (iii) appropriately redirecting the protection intervals
involving the reduced task ¢ to its children.

During the redirection in the last step, the planner converts any protection interval

(E.ty12) € TT where t;=¢ to (C.t.t5), and converts any protection intervals where t;=t t0

(Ctyt,) (where 1.1, are appropriate tasks belonging to T,). The various implemented

planners follow different conventions about how the appropriate #,;, and t,, are computed. For

example, irrespective of the protected condition E, NONLIN [29] makes ¢, to be #,,,, and t,, to
be f.ng, Where t,,, and £.,, are the beginning and ending tasks of T, (i.e., no task of T, pre-
cedes #,, or follows f,,4) respectively. Other conventions might look at the effects and

! When the task ¢ is of the ferm achieve(C), and C can be achicved directy by using the effects of some
other task ¢, € T, then, ¢ becomes a phantom task and its reduction becomes ({phan'om (o)}.G,Z). A new pro-
tection interva: (C 1) will be added to the resultant plan.

conditions of tasks belonging to T to decide ¢, and t,,. For the purposces of this paper, cither

of these conventions is admissible.

§ 1.3. Completed Plan: A task network is said to represent a completed plan when none of its
tasks have to be reduced further, The planner cannot reduce certain distinguisbed tasks of the
domain called primitive rasks. (It is assumcd that the ptanncr alrcady knows how to execute
such tasks.) Further, if al the required effects of & task arc alrcady true in a given partial plan,
then that task does not have to be reduced any further (such tasks are called phantom goals
[4D). ’

§ 1.4. Hierarchical Task Network (HTN): The hicrarchical devzlopment of a plan
P:(T.O JT) is captured by its hicrarchical task network (abbreviated as HTN). HTN(F) is a 3-
tuple { P:(T,0.IM), T".D), where T* is the union of sct of tasks in T and all their ancestors,
and D represents the parent-child relations between the elements of T, The set IT is the set of
protection intervals associated with HTN(P). (For convenience, we shall abbreviate HTN(P) to
HTN, where the reference to P is unambiguous, and also refer to the members of 7° as the
nodes of HTN.) The HTN of a plan thus capturcs the development of that plan in terms of the
corresponding task rcductions. We shall refer to the number of leaf nodes in the HTN, IT'| as
the length of the corresponding plan, and denote it by Np.

For the sake of uniformity, we shall assume that there are two special primitive nodes n;
and ng in the HTN corrcsponding to the input state and the goal state of the planning problem,
such that effects(n;) comprise the facts true in the initial specification of the problem, and
conditions (ng) contain the goals of the problem. The notation “‘n, < n,'’ (where n; and n,
are nodes of HTN) is used to indicate that n, is ordered to precede n, in the partially ordercred
plan represented by the HTN (i.e., ny € predecessor’ (n,), where the predecessor relations
enforce the partial ordering among the nodes of the HTN). Similarly, “‘n; > 15’ denotes that
ny is ordered to follow n,. and “‘ny J ny"" denotes that there is no ordering relation between
the two nodes (n; is parallel to n5). The set consisting of a node n and all its descendents in
the HTN is defined as the sub-reduction of n, and is denoted by R (n). Following [4,30], we
also distinguish two types of plan applicability conditions: the preconditions (such as Clear (A)
in the blocks world) which the planner can achieve, and the filter conditions (such as
Block(A)) which the planner cannot achieve. We shall use the notation *‘F I £’ to indicate

that f deductivcly follows from the set of facts in F. Finally, the modal operators *‘0J ** and
*{ " denote necessary and possible truth of an assertion.

2. Validation Structure and Annotations

Here we formally develop the notion of the validation structure of a plan as an explicit
representation of the internal dependencies of a plan, and provide motivation for remembering
such structures along with the stored plan. We will begin the discussion by defining our
notion of validation, present a schems for representing the validation structure locally as

BT T

annotations on individuval nodes of a HTN, and finally discuss algorithms for efficient computa-
tion of these node validations.

2.1. Validation Structure

§2.1. Validation: A validation v is a 4-wple (E, n,, C, ng), where n, and n, are leaf nodes
belonging to the HTN, and the effect £ of node n, (called the source) is used to satisfy the
applicability condition C of node n; (called the destination). C and E are referred to as the
supported condition and the supporting effect respectively of the validation. As a necessary
condition for the existence of the validation v, the partial ordering among the tasks in HTN
must satisfy the relation n, <n;. The type of a validation is defined as the type of the applica-
bility condition that the validation supports (one of filter condition, precondition, phantom
goal). Notice that every validation v: (E, n,, C, r;) corresponds to a protection interval
(E.ng.ng) e TIof the HTN (that is, the effect £ of 1.3de n, is protected from node n, to node
ny). This correspondence implies that there will be a finite set of validations corresponding to
a given HTN representing the development of a plan; we shall call this set V. (If £ is the max-
imum number of applicability conditions for any action in the domain, then |V| < ENp, where
Np is the length of the plan as defined above [13).)

Figure 2 shows the validation structure of the 1 :an for solving a block stacking problem
,3BS (also shown in the figure). Validations are represented graphically as links between the
effect of the source nose and the condition of the dcstination node. (For the sake of exposi-
tion, validations supporting conditions of the type Block(?x) have not been shown in the
figure) As an cxample, (0n(B.C).n15,0n(B.C).ng) is a validation belonging to this plan
since On(B,C) is required at the goal state ng, and is provided by the effect On(B ,C) of
node n,s.

The level of a validation is defined as the reduction level at which it was first introduced
into the HTN (see [13] for the formalization of this notion). For example, in Figure 2, the vali-
dation (Block(A),n; .3lock(A).ne) is considered to be of a higher level than the validation
(On(A.Table),n; ,On(A Table).nq), since the former is introduced into the HTN to facilitate
the reduction of task n4 while the latter is introduced during the reduction of task ng. A useful
characteristic of hierarchical planning is that its domain schemas are written in such a way that
the more important validations are established at higher levels, while the establishment of less
important validations is delegated to lower levels. Thus, the level at which a validation is first
introduced into an HTN can be taken to be predictive of the importance of that validation, and
the effort required to (re)establish it.2 The validation levels can be pre-computed efficiently at
the time of annotation.

? We assume that domain schemas having this type of abstraction property are supplied/encoded by the user in
the first place. What we are doing here is 1o exploit the notion of importance imylicit in that abstraction,

ueld SUE Jo mdnNg uopepiep 7 andjy

suoijepljea
sl o o -\‘..l..uonnn---'...n’llll
['\\ ('vivo _t%\\\\\\\n\ (080 uel
Ve \\\ E.wwc_:_xn AW
Ao.mvco \. uomIY-uting 9Ly :o-ouww:a K30 , ”|| | —
\ 1] Seigel'v)uo
(@'vuo w0 we ~eiqe1'g)uo
. NOUW2Y
89.3&”! .\.\A<rm0_0
S I N 4 / =~ (g)iee|D
% (8'v)uo pe (0'gluo e [~~~ (0)Ie8|)
olels |eob (8'v)uo-exew :yos (0'g)uo-exeny :yog - o
. . u
[a'vluolv :eu [(o'a)uolv:zu aimis nduj ®
/ \
m m m ﬁ& a.nv:O!m.ﬁ.w:O
o
[eos uoneniig Induyj H
9 2119 v

g (0)woo1g* (g)o0ig* (v)3ooig

(0)ieejnp(eiqe ‘D)
v (g)ee|D%(ejqe) 'g)uOR
v)ies|D%(eiqe] 'y)uo

(o'8luos(g'viuo

e~ .y

As the specification of the plan changes or as the planner makes new planning decisions,

the dependencies of the plan as represented in its validation structure get affected. The notions
of corwis’ency and incor* .ncies, developed below, capture the effects of such changes on the
plan vai..’ “ion structure.
§2.2. Inconsistencies and Coensistency of Validation Structure: A HTN is said to have a
consisient validation structure if it does not have any unnecessary, missing or failing valida-
tions. The unnecessary, missing or failing validations in a HTN will be referred to as
ir consistencies in its validation structure.

e A validation v:(E.n,,C.ng) is considered a failing validation when the corresponding pro-
tection interval is undone. More formally, v is a failing validation iff:

[effects(n)i+- E IN [3n"s.t. {(ng<n<ng) N\ effects(n’) = —=E)

Thus, for every non-failing validation v:{E,n,,C ,ns) of a HTN, the effects of n, should entail
E, and E should aecessarily persist from n, to n,.

e A val:cation v: (E. ng, C, ng) is considered an unnecessary validation if it is not required
to support the ~ondition C at node n,. This could happen either because n, is no longer a part
of the HTN or because it no longer requires the condition C.

o There is 2 missing validation corresponding to a condition, node pair (C’,n ") of the HTN iff
Av:(E, ns, C, ng) st. C=C’N\ ny=n’ (i.e., the condition C” is not supported by any valida-
tion).

Let us consider the example of the 3BS plan shown in Figure 2. If the specification of
this plan is changed such that On (A ,B) is no longer a goal, then (On (A ,B),n6,0n (A .B),ng)
will be an unnecessary validation. Further, if the new specification contains a goal On &A,D).
then since there is no validation supporting the condition node pair (On(A D).ng), there is a
missing validation corresponding to this pair. Finally, if we suppose that the new specification
contains On(D ,A) in its initial state, then the validation (Clear(A).n, Clear (A),n7) will be
failing, as effect(n,) B Clear(A).

From these definitions, it should be clear that in a HTN with a consistent validation struc-
ture, each applicability condition of a node (including each goal of ng) will have a non-failing
validation supporting it. (A completely reduced HTN with a consistent validation structure con-
stitutes a valid executable plan.)

2.2. Annotating Validation Structures

Having developed the notion of validation in a plan, our next concem is representing the vali-
dation structure of the plan locally as annotations on individual nodes of a HTN. The intent is
to let these annotations encapsulate the role played by the sub-reduction below that node in the
validation structure of the overall plan, so that they can help in efficiently gauging the effect of

any modification at that node on the overall validation structure of the plan. We achieve this as
follows: For each node n € HIN we define the notions of (i) e-conditions(n), which are the
externally useful validations supplicd by the nodes belonging to R (n) (the sub-reduction below
n) (i.) e-preconditions(n), which are the extcmally established validations that are consumed
by nodes of R(n), and (iii) p-conditions(n), which arc the external validations of the plan that
are required to persist over the nodes of R (n).

§2.3. E-Conditions (External Effect Conditions): The e-conditions of a node n correspond
to the validations supported by the effects of any node of R (n) which are used to satisfy appli-
cability conditions of the nodes that lie outside the sub-reduction. Thus,

e—conditions(n) = {v,«: (E, n, C, ng)lv,-eV; n,eR(n), nze R(n) }

For example, the e-conditions of the node n5 in the HTN of Figure 2 contain just the validation
(On(A,B), nys On(A B), ng) since that is the only effect of R (n3) which is used outside of
R(n3). The e-conditions provide a way of stating the extemally useful effects of a sub-

reduction. They can be used to decide when a sub-reduction is no longer necessary, or how a
change in its effects will affect the validation structure of the parts of the plan outside the sub-

reduction.
From the definition, the following relations between the e-conditions of a node and the

e-conditions of its children follow:

(1) If n is a leaf node, then R(n) = {n) and the e-conditions of n will simply be all the
validations of HTN whose source is n.

(2) If n is not a leaf node, and n. € children(n), and v, :(E .n,,C.ny) is an e-condition of
n., then v, will also be an e-condition of n as long as ny¢ R(n) (since R(n.) < R(n),
(n, € R(n)] = [n; € R(n)D.

3 If v:(E n.C,nyg) is an e-condition of n, then In, € children(n) such that v is an e-
condition of n.. This follows from the fact that if ny¢ R(n) then vn. € children(n) ,
ny ¢ R(n.), and that if n, € R(n), then3n. € children(n) such that n, € R(n,).

These three relations allow PRIAR to first compute the e-conditions of all the leaf nodes of the

HTN, and then compute the e-conditions of the non-leaf nodes from the e-conditions of their

children.

§2.4. E-Preconditions (External Preconditions): The e-preconditions of a node n

correspond to the validations supporting the applicability conditions of any node of R(n) that

are satisfied by the effects of the nodes that lie outside of R(n). Thus,

e-preconditions(n) = {v;: (E, n,, C, n)|vieV: ngeR{rY; n,¢ R(n) }
For example, the e-preconditions of the node n4 in the HTN of Figure 2 will i::clude the valida-

tions (Clear(A), n;, Clear(A), nq) and (Clear (B), n;, Clear(B), ng). The e-preconditions of

10

a node can be used to locate the parts of rest of the plan that will become unnecessary or
redundant, if the sub-reduction below that node is changed.

From the definition, the following relations between the e-preconditions of a node and the
e-preconditions of its children follow:

(1) If n is a leaf node, then R(n) = {n} and the e-preconditions of n will simply be all the

validations of HTN whose destination is .

(2) If n is not a leaf node, and n. € children(n), and v, (E n,.C ,n4) is an e-precondition of

n., then v, will also be an e-precondition of n as long as n,¢ R(n) (since R(n.)< R(n),

n; € R(n)).

(3) If vi{E,n, .C.ny) is an e-precondition of n, then 3n. € children{n) such that v is an e-
precondition of n.. This follows from the fact that if n,¢ R(n) then vn, € children(n)

n.¢ R(n.) and that if n; € R(n), then3n, € children(r) such that n; € R(n.).

These three relations allow PRIAR to first compute the e-preconditions of all leaf nodes of the
HTN, and then compute the e-preconditions of the non-leaf nodes from the e-preconditions of
their children.

From the definitions of e-conditions and e-preconditions, it should be clear that they form
the forward and backward validation dependency links in the HTN. For the sake of uniformity,
the set of validations of type (E ;.G ,ng), (where G is a goal of the plan) are considered e-
preconditions of the goal node ng. Similarly, the set of validations {/.n;,C .n;), (where / is a
fact that is true in the input state of the plan) are considered e-conditions of the input node n;.
§2.5. P-Conditions (Persistence Conditions): P-conditions of a node n correspond to the
protection intervals of the HTN that are external to R (), and have to persist over some part of
R (n) for the rest of the plan to have a consistent validation structure. We define them in the
following way:

A validation v;: (E. n, C, nd)eV is said to intersect the sub-reduction R(n) below a
node n (denoted by “‘v; @ R(n)'") if there exists a leaf node n € R(n) such that n falls
between n, and n, for some total ordering of the tasks in the HTN. In other words,

vi: (E, 1, C, n)®R(n) iff {(n,<n<ny)
Using the definition of the validation, we can re-express this as
Jn’ € R(n) s.t. children(n =D N\
vit(E,n,, C.ng) @ R(n) iff , , ,
(n<n’<ngNng fn’Nng fn)
(Note: Given that n,<n,, the only cases in which { (n,<n’<ny) are (i) n’ is already totally
ordered between n, and ny, ie, O(n,<n’<ngy or (i) n'<ng N n’[n, or (iii)
n,<n’ N\ n’ fngor(iv) n’ fn, N n’[n, Using the transitivity of ‘<’* relation, we can sim-

plify this disjunction to n,<n’<ny \V n, fn’N ng fn’.)

11

]

A validation v;: (E, n,, C, ny)eV is considercd a p-condition of a node n iff v; inter-

sects R (n) and ncither the source nor the destination of the validation belong to R(n). Thus,
P-conditions(n) = [vi: (E. n,C, nd)|v;eV; n,.nge R(n) v ®R(n)}

From this definition, it follows that if the effects of any node of R(n) violate the validations
corresponding to the p-conditions of n, then there will be a potential for harmful interactions.
As an example, the p-conditions of the node nj in the HTN of Figure 2 will contain the valida-
tion (On(B,C).,n15,0n(B.C).ng) since the condition On(B.C), which is achieved at ns
would have to persist over R(n3) to support the condition (goal) On(B,C) at n;. The p-
conditions are useful to gauge the effect of changes made at the sub-reduction below a node on
the validations extemnal to that sub-reduction. They are of particular importance in localizing
the changes to the plan during refitting [15].

From the definition of p -conditions, the following relations follow:
(1) p-conditions(ny) = p-conditions(ng) = Q.

(2) When n is a leaf node, (i.e., children(n)}=QD), R(n) will be {n}, and the definition of p-
conditions(n) can be simplified as follows. From the definition of @,

ViilE e, Con)®{n} = n, fnNng [nN (n,<n<ng) = —(n<n, V n>ny)
and, thus when 72 is a leaf node

P-conditions(n) = {v;: (E.n.C, nd)lv;eV: ny#ning#n; —(n<n, \ n>ny)}

(3) If n. e children(n), and v.:(E,n,, C,ny) € p-conditions(n;), then v, € p-
conditions(n) iff n, ,ny € R(n). This follows from the fact that if v. @ R(n.) then
3n’ € R(n.) which satisfies the ordering restriction of ‘@ **. Since R(n.)< R(n), we
also have n’ € R(n) and thus v. @ R(n). So, as long as n,,n;¢ R(n), v. will also be a
p-condition of n.

(4) If n is not a leaf node and v € p-conditions(n) then Jn, € children(n) s.t. v € p-
conditions(n.). This follows from the fact that for v to be a p-condition of n, there
should exist a leaf node n’ belonging to R(n) such that the ordering restriction of the
‘“®@ " relation is satisfied. But, from the definition of sub-reduction, any leaf node of
R (n) should also have to be a leaf node of the sub-reduction of one of its children. So,
3n, € children(n) s.t. n' € R(n.). Moreover, as the source and destination nodes of v
do not belong to R (n), they will also noi belong to R(n_).

These relations provide a way of computing the p-conditions of a non-leaf node from the p-
conditions of its children, which will be exploited in computing the annotations.

§2.6. Validation States: If n is a primitive task belonging to the HTN, then we define struc-
tures called preceding validation state, AP (n), and succeeding validation state, A*(n), as fol-
lows:

12

AP (n) = e-preconditions(n) U p-conditions(n)
Af(n) = e-conditions(n) \U p-conditions(n)
Thus, the validation states AP(n) and A*(n) are collect’'ons of validations that should be
preserved by the state of the world preceding and following the execution of task n, for the

rest of the plan to have a consistent validation structure. Fer example, the plan can be success-
fully executed from any state W of the world such that

wviE.n, C.ng) € A(ny), WHE

Thus the validaticn states can be used to gauge how a change in the expected state of the
world will affect the validation structure of the plan. This is useful both in reuse, where an
existing plan is used in a new problem situation, and in replanning, where the current plan
needs to be modified in response to execution time expectation failures. The validation states
can be seen as a generalization of STRIPS' triangle tables {6}, for pantially ordered plans.

The validation states also provide a clean framework for execution monitoring for par-
tially ordered plans. If EXEC denotes the set of actions of the plan P that have been executed
by the agent until now, and W denotes the current world state, then the set of actions of the
plan that may be executed next, E (P ,W EXEC), is computed as (see [20]):

E(P.W [EXEC) = {n, |primitive(n,) Nvv:(E n,.C.ng) € AP(n,) st. ny ¢ EXEC, WI-E}

As long as the agent executes any of the ::ctions in E (P ,W ,EXEC) next, it is assured of follow-
ing the plan, while taking into account any unexpected changes in the world state. When
E (P W ,EXEC)=0, replanning (or modification of the current plan P) will be necessitated (see
{20)).

2.3. Computing Annotatior:s

In the PRIAR framework, at the end of a planning session, the HTN showing the development of
the plan at various levels of abstraction is retained, and each node of the HTN is annotated with
the following information: (1) Schema(n), the schema instance that reduced node n (2)
Orderings (n), the ordering relations that were imposed during the expansion of n (see §1.2)

‘ (3) e-preconditions(n) (4) e-conditions(n), and (5) p-conditions(n).

Schema(n) and Orderings(n) are remembered in a straight forward way during the
planning itself. The rest of the node annotations are computed in two phases: First, the annota-
tions for the leaf nodes of the HTN are computed with the help of the set of validations®, V,
and the partial ordering relations of the HTN. Next, using relations between the annotations of a

3 This information is useful for undoing task reductions dvring plan modiﬁéaﬁons; see section 3.2.1.

4 As mentioned previously, the set of validations can be computed directly from the set of protection intervals
associated with the plan. Most hierarchical planners keep an explicit record of the protection intervals underlying
the plan. NONLIN {30}, for example, maintains this information in its GOST data structure.

13

g
f

node and its children, the annotations are propagated to non-leaf nodes in a bottom up
breadth-first fashion. The exact algorithms are given in [13], and are fairly straightforward to
understand given the development of the previous sections. If Np is the length of the plan (as
measured by the number of leaf nodes of the HTN), the time complexity of annotation computa-
tion can be shown to be O(sz) [13]. Note that the ease of annotation computation is to a
large extent an advantage of integrating planning and plan modification, as all the rclevant
information is available in the plan-time datastruciures. With respect to storage, the important
point to be noted is that PRIAR essentially remembers only the HTN representing the develop-
ment of the plan and not the whole explored scarch space. If the individual validations are
stored in one place, and the node annotations are implemented as pointers to these, the increase
in storage requirements (as cerapared to the storage of the un-annotated HTN) is insignificant.
This small increase in the storage requirements can be justified in light of the multiple uses of
the stored information.

While the procedures discussed above compute the annotations of a HTN in one-shot,
often during plan modification, PRIAR needs to add and remove validations from the HTN one at
a time. To handle this, PRIAR also provides algorithms (called Add-Validation and
Remove-Validation ') to update node annotations consistently when incrementally adding or
deleting validations from the HTN [13]. PRIAR uses these procedures to re-annotate the HTN and
to maintain a consistent validation structure after small changes are made to the HTN during the
modification process. They can also be called by the planner any time it establishes or
removes a new validation (or protection interval) during the development of the plan, to
dynamically maintain a consistent validation structure. The time complexity of these algorithms
is O(Np). Whenever these procedures add or remove a validation, they also update the protec-
tion intervals (IT) of the HTN appropriately.

3. Modification by Annotation Verification

We will now turn to the plan modification process, and demonstrate the utility of the annotated
validation structure in guiding plan modification. Throughout the ensuing discussion, we will
be following the blocks world example case of modifying the plan for the three block stacking
problem 3BS (i.e., R°= 3BS) shown on the left side in Figure 3 to produce a plan for a five
block stacking problem SSBS1° (ie., P"= S5BS1), shown on the right side. We shall refer to
this as the 3BS—S5BS1 example.

3.1. Mapping and Interpretation

In PRIAR, the set of possible mappings between [P°,R°] and P" are found through a partial
unification of the goals of the two problems. There are typically several semantically consistent
mappings between the two planning situations. While the PRIAR modification framework

3 It may be interesting to note that $5BS1 contains an instance of what is known as the Sussman Anomaly {3]

14

On{J.Te>)aClaar(J) On(L K}&On(X.J)
AOn(1, Tex%)&Cloar(K) &0n(J.)8 Clear(M)
800(X.H8Cloar(L)
On{A.B)&0n(B.C) r-%n(Lw&o:(u.;rz;)m) L
Jock(1) A Biock{J)
On(A.Tabla)aCloar(A) £Block(K)aBlock(L)8Biock{M)

20n{8.Tabie)AClear(B) A
80n{C.Table)aClear(C)

K
Block{A),Block(B8).Biock(C)
lall slle | z @ :< v: FR ;’ [m]
tnput Situation Goal Input situation Goal

n
P° 38s P ss5BS1
Figure 3. 3BS—HS5BS1 Modification problem

would be able to succeed with any of those mappings, selecting the right mapping could con-
siderably reduce the cost of modification. The mapping and retrieval methodology used by
PRIAR [13,17] achieves this by selecting mappings based on the number and type of incon-
sistencies that would be caused in the validation structure of R°. While the details of this stra-
tegy are beyond the scope of this paper, a brief discussion appears in section 2.4.2. For the
present, we shall simply assume that such a mapping is provided to us. (It should be noted
that the mapping stage is not important when PRIAR is used to modify a plan in response to
incremental changes in its specification, as is the case during incremental planning or replan-
ning for example [20])

The purpose of the interpretation procedure is to map the given plan, R° along with its
annotations into the new planning situation P*, marking the differences between the old and
new planning situations. These differences serve to focus the annotation verification procedure
(see section 3.2.1.) on the inconsistencies in the validation structure of the interpreted plan.
Let /° and G° be the partial descriptions corresponding to the required initial state, and the set
of goals to be achieved by R° respectively. Similarly, let /* and G" be the corresponding
descriptions for the ncw problem P". The interpreted plan R' is constructed by mapping the
given plan R° along with its annotations into the new problem situation, with the help of the
mapping & Next, the interpreted initial state I, and the interpreted goal state, G' are com-
puted as I = I"UI°-a and G* = G"\UG°-a (where “*-"" refers to the operation of object sub-
stitution). Finally, some facts of I and G* are marked to point out the followir.g four types of
differences between the old and new planning situations:

(1) A description (fact) f € I’ is marked an out fact iff (f € I°*®) A (I" W f).
(2) A description (fact) f € I' is marked a new factiff (f € I") N (°-a B-f).

(3) A description (goal) g € G* is marked an extra goal iff (g¢ G°-@) N\ (g € G").

(4) A description (goal) (g € G°) is marked an unnecessary goal iff
(g € G°-a)A (geG™). At the end of this processing, R', I' and G are sent to the

15

annotation verification procedure.

3.1.1. Example

Let us assume that the mapping strategy selects @ = [A =K B —J ,C -/) as the mapping from
3BS to SSBSI. Figure 4 shows the result of interpreting the 3BS plan for the S5BS1 problem.
With this mapping, the facts Clear (L) and On(X ,Table), which are true in the interpreted 3BS
problem, arc not true in the input specification of S5BS1. So they are marked out in I'. The
facts Clear(L), On(M Table), On(I Table), On(L M) and On(K J) are true in S5BS1 but
not in the interpreted 3BS. These arc marked as new facts in I‘. Similarly, the goals
On(L .K) and Clear (M) of S5BS1 are not goals of the interpreted 3BS plan. So, they are
marked extra goals in G'. There are no unnecessary goals.

3.2. Annotation Verification and Refit Task Specification

At the end of the interpretation procedure, R° may not have a consistent validation structure
(see §2.2) as the differences between the old and the new problem situations (as marked in /¢
and G') may be czusing inconsistencies in the validation structure of R. These inconsisten-
cies will be referred to as applicability failures, as these are the reasons why R’ cannot be
dircctly applied to P". The purpose of the annotation verification procedure is to modify R’
such that the result, R®, will be a partially reduced HTN with a consistent validation structure.

The annotation verification procedure achieves this goal by first localizing and character-
izing the applicability failures caused by the differences in /‘ and G, and then appropriately
modifying the validation structure of R’ to repair those failures. It groups the applicability
failures into one of several classes depending on the type of the inconsistencies and the type of
the conditions involved in those inconsistencies. Based on this classification, it then suggests
appropriate repairs. The repairs involve removal of unnecessary parts of the HTN and/or addi-
tion of non-primitive tasks (called *‘refit tasks'’) to establish missing and failing validations. In
addition to repairing the inconsistencies in the plan validation structure, the annotation
verification process also uses the notion of p -phantcm-validations (see below) to exploit any
serendipitous effects to shorten the plan. Figure 5 provides the top level control structure of
the annotation verification process.

The individual repair actions taken to repair the different types of inconsistencies are
described below; they make judicious use of the node annotations to modify R’ appropriately.
The specifications of the exact procedures used by all these modification actions can be found
in [13].

3.2.1. Unnecessary Validations—Pruning Unrequired Parts

If the supported condition of a validation is no longer required, then that validation can be
removed from the plan along with all the parts of the plan whose sole purpose is supplying
those validations. The removal can be accomplished in a clean fashion with the help of the

16

Ay

ISUSS<-SHE d0) unlg padsdanuy p aundyy
S e R
— R PSRN - N S———
etn WO Ul e (rvo v -
(I'r)u ETTYY FINTUTYY e Sy ~
) ——— e b~ T—
uoady voing i i vonsy-voing g1\ -~
! /
A — |
(r'}uo o we
F'wuo ae
, ﬂ%:nz
NOWIY (rrjvoindlog s
Hrwuoindlog eu I/ ll.lll
S — l/"l’lll!ll!ll
mur_
ejeis |sob o ('rvo we
WO we .
(Fsiuo-ovepy wg (rrivo-swpy w3
(+wvoly :¢w [(rrivoly :zw

(w)iweid

(%'1uo

ejels |eoB
poyesdiojuy

[e0H

{r3vosirivo
(3]

H

[1<0 ‘r<-8 Y<vk w
Buiddepy

uonenys nduj

-t

o

(e1qe 1 ‘H)uo
(eiqeL'r)uO

N " -)

el Wl

1 A

1S8SS

/\

Sioe4 .1N0.

§j9e4 JM3N.

[212}]

\Aﬂrmo_o

— (1)1e81D

|_-Oieerp|

ejeis Induy

(&1goL ‘U
(1)sv®)2

(%)see1D
(r)ieeid

(*0)vo
(w*)uo
(o)q3n‘juo

(o(qeL‘WivO

()ave(0

‘_

indu) pejeadiezy)

17

Procedure Annotation—Verification ()

1 input: R*: Interpreted plan, /*: Interpreted input state, G*: Interpreted goal state
2 begin

3 foreach g € G' s.t. g is marked as an unnecessary-goal

4 do find v:(E n,.C i) € A¥(ng) st. C=g

5 Prune-Validation(v) od

6 foreach ¢ € G' s.t. g is marked as an extra-goal

7 do Repair-Missing-Validation(g :condition , ng:node) 0d

8 foreach f € I' s.t. f is marked as an out-fact

9 do foreach v:(E n;,C ng) € A*(n)) st. E=f
10 doif E’ e I' 5.4. E’ is marked new A E’}~C [*Verification®/

11 then do Remove-Validation(v)
12 Add-Validation(v"(E " .C 4)) od
13 elseif fype (C =Precondition

14 then Repair-Failing-Precondition-Validation(v)

15 elseif rype (C)=Phantom [*n, is a phaniom node*/

16 then Repair-Failing-Phantom-Validation(v)

17 elseif rype (C)=Filter-Condition

18 then Repair-Failing-Filter-Condition-Validation(v) od od
19 foreach vi{E n,.C.ng) € V st .
20 n,2n; N E € I'N E is marked new in I' [*checking for serendipitous effects*/
21 do Exploit-P-Phantom-Validation(v) od
22 end

Figure 5. Annotation-Verification Procedure

annotations on R‘: After removing an unnecessary validation from the HTN (which will also
involve incrementally re-annotating the HTN, see section 2.3), the HTN is searched for any node
n, that has no e-conditions. If such a node is found, then its sub-reduction, R(n,), has no
useful purpose, and thus can be removed from the HTN. This removal iurns the e -preconditions
of n, into unnecessary validations, and they are handled in the same way recursively.

The procedure Prune-Validation in Figure 6 gives the details of this process. After
removing the unnecessary validation v from the plan, it checks to see if there are any sub-
reductions that have no useful effects (lines 3-5). (Because of the explicit representation of the
validation structure as annotations on the plan, this check is straightforward.) If there are such
sub-reductions, they have to be removed from the HTN (lines 6-16). This involves removing
all the intzmal validations of that sub-reduction from the HTN (lines 7-8), and recursively prun-
ing the validations corresponding to the external preconditions of that sub-reduction (lines 9-
10). This lauter action is to ensure that there won't be any parts of the HTN whose sole pur-
pose is to supply validations to the parts that are being removed. The Remove—Validation
procedurs (line 8) not only removes the given validation, but also updates the validation struc-
ture (V) and the protection intervals (IT) of the HTN consistently. Finally, the sub-reduction is
unlinked from the HTN (lines 12-14), and the partial ordering on the HIN (O) is updated so

13

Procedure Prune-Validation (v :(E A C ngyaimN(P (7.0 . .DY

1 begin
2 Remove-Validation(v)
3 il e -conditions(n, =0
4 then do find n € {n,) U ancestors(n,) s.L.
5 e-conditions(n) = @ A e -conditions(parent (n)) # ©
6 [*Remove the sub-reduction below n'*/
7 foreach n’ € R(n) s.t. children(n"=2
8 do foreach v’ € e-conditions(n”)
9 do Remove-validation(v") od
10 foreach v’ € e-preconditions(n)
11 do Prune-Validation(v") od
12 /* unlinking R (n) from HTN */
13 T « T -R(n)
14 T «T-R(n)
15 D «D-{dld e D Nd cR(n))
16 Update-Orderings(O, R(n)) od fi
17 end

Figure 6. Procedure for repairing unnecessary validations

that the ordering relations that were imposed because of the expansions involved in R (r) are
retracted. This backtracking is accomplished with the help of the orderings field of each node
in R(n) (sce section 2.3) which stores the ordering relations that were imposed because of the
expansion below that node. The procedure involves: (i) Retracting from O all the ordering
relations that are stored in the orderings fieid of the removed nodes (R (n)), and (ii) Appropri-
ately redirecting® any remaining ordering relations of O involving the removed nodes (these
correspond to the orderings that were inherited from the ancestors of n; see §1.2).

The structure of the HTN at the end of this procedure depends to a large extent on the
importance of the validation that is being removed (that is, how much of the HTN is directly or
indirectly present solely for achieving this validation). The Prune-Validation procedure
removes exactly those parts of the plan that become completely redundant because of the
unnecessary validation. It will not remove any sub-reduction that has at least one e-condition
(corresponding to some useful effect). Many previous plan modification strategies (such as
[6,9]) did not have this flexibility. Explicit representation of the validation structure makes
this possible in PRIAR's framewvork. There is, however, a trade-off involved here: the strategy
adopted by the Prune-Validation procedure is appropriate as long as the goal is to reduce the
cost of planning (refitting). However it should be noted that if the cost of execution of the
plan were paramount, then it would be necessary to see if the remaining useful effects of the
sub-reduction could be achieved in an alternate way that would incur a lower cost of execution
To take an extreme example, suppose the plan R achieves two of its goals, taking a flight and
reading a paper, by buying a paper at the airport. If R° is being reused in a situation where

6 To a sibling of 7 in case of pruned reduction, and to 72 in the case of a replaced reduction (see 3.2.3).

19

the agent docs not have to take a flight, it will be better to satisfy the goal of buving the paper
in an altermate way, rather than by going to the airport. This type of analysis can be done with
the help of the “levels® of validations (sce section 2.1). We might decide to remove a sub-
reduction R (n) and achieve its uscful effects in an alternate way if the levels of e-conditions of
n which arc removed are ‘significantly” higher than the levels of the remaining e-conditions of
n. PRIAR currently does not do this type of analysis while pruning a validation.

3.2.2. Missing Validations—Adding Tasks for Achieving Extra Goals

If a condition G of a node ny is not supported by any validation belonging to the set of vali-
dations of the plan, V, then there is a missing validation corresponding to that condition-node
pair. Since, an extra goal is any goal of the new problem that is not a goal of the old plan, it
is un-supported by any validation in RY. The general procedure for repairing missing valida-
tions (including the extra goals, which are considered conditions of ng) is to create a refit task
of the form n,,:Achieve[G], and to add it to the HTN in such a way tha: n;<n,<n,, and
parent(n,,)=parent(ns). The new validation v,,:(G ,n,,.G ,ng) will now support the condition
G. Before establishing a new validation in this way PRIAR uses the planner’s truth criterion
(intcraction dctection mechanisms) to make sure whether that validation introduces any new
failing validations into the plan (by causing hamful interactions with the already established
protecticn intervals of the plan). The incremental annotation procedures are then used to add
the new validation to the HTN. Notice that no a priori commitment is made regarding the
order or the way in which the condition G would be achieved; such commitments are made by
the planner itself during thc‘reﬁning stage.

3.2.3. Failing Validations

The facts of /' which are marked *‘out*’ during the interpretation process, may be supplying
validations to the applicability conditions or goals of the interpreted plan R‘. For each failing
validation, the anrotation verification procedure first attempts to see if that validation can be
re-established locally by a new effect of the same node. If this is possible, the validation
structure will be changed to reflect this. A simple example would be the following: Suppose
there is a condition Greater (B,7) on some node, and the fact Equal(B,10) in the initial state
was used to support that condition. Suppose further that in the new situation Equal(B,10) is
marked out and Equal(B,8) is marked new. In such a case, it should be possible to establish
the condition just by redirecting the validation to Equal (B .8).

When the validations cannot be established by such local adjustments, the structure of the
TN has to be changed to account for the failing validations. The treatment of such failing
validations depends upon the types of the conditions that are being supported by the validation.
We distinguish three types of validation failures—validations supporting preconditions, phan-

20

et et i

gy i

A RS I A

tom goals7 and filter conditions respectively—and discuss each of them in tumn below.

3.2.3.1. Failing Precondition Validations

If a validation v:(E ,n;,C ,ng) supporting a precondition of some node in the HTN is found to be
failing, because its supporting effect E is marked out, it can simply be reachieved. The pro-
cedure involves creating a -~fit task, n,:Achieve[E,, to re-establish the validation v, and
adding it to *~= HTN in suck 1 way that n;<n,<ny and parent(n,) = parent(ny). The valida-
tion structure of the plan is updated so that the failing validation v is removed and an
equivalent validation v':(E .n,.C.ng) is added. (This addition does not introduce any further
inconsistencies into the validation structure (see section 4.2.1).) Finally, the annotations on the
other nodes of the HTN are adjusted incrementally to reflect this change.

3.2.3.2. Failing Phantom Validations

If a validation v, :(E ,n;,C ,n,) is found to be failing and n, is a phantom goal, then v, is con-
sidered a failing phantom validation. If the validation supporting a phantom goal node is fail-
ing, then the node cannot remain phantom. The repair involves undoing the phantomization, so
that the planner would know that it has to re-achieve that goal. This step essentially involves
backtracking over the phantomization decision and updating the HTN appropriately (similar to
the process done in the Prune-Validation procedure (Figure 6, lines 12-16). Once this change
is made, the failing valication v, is no longer required by the node n,, and so it is removed
(updating V and TIT).

3.2.3.3. Failing Filter Condition Validations

In contrast to the validations supporting the preconditions and the phantom goals, the valida-
tions supporting failing filter conditions cannot be reachieved by the planner. Instead, the plan-
ning decisions which introduced those filter conditions into the plan have to be undone. That
is, if a validation v (E ,n,,Cy .ng) supporting a filter condition C; of a node ny is failing, and
n’ is the ancestor of ny; whose reduction introduced C, into the HIN originally, then the sub-
reduction R (n”") has to be replaced, and n’ has to be re-reduced with the help of an alternate
schema instance. So as to least affect the validation structure of the rest of the HTN, any new
reduction of n’ would be expected 1o supply (or consume) the validations previously supplied
(or consumed) by the . placed reduction. Any validations not supplied by the new reduction
would have to be re-established by alternate means, and the validations not consumed by the
new reduction would have to be pruned. Since there is no way of kuowing what the new

7 The difference between a precondition validation and a phantom goal validation is largely a matter of how
the corresponding conditions are specified in the task reduction schemas. In NONLIN terminology {29], the precondi-
tion validations suppont the “‘unsupervised conditions’’ of a schema, while the phantom goal validations support
the “*supervised conditions’’ of a schema.

21

g

reduction will be until the refitting time, this processing is deferred until then.®

The procedure shown in Figure 7, details the treatment of this type of validation failure
during annotation verification. In line 3, it finds the node n’ that should be re-reduced by
checking the filter conditions of the ancestors of #. Lines 5-18 detail changes to the validation
structure of the HTN. Any e-conditions of the nodes belonging to R (n’) are redirected to n’, if
they support nodes outside R(n’) (lines 6-9). Otherwise, such e-conditions represent internal
validations of R(n’), and are removed from the validation structure (line 10). At the end of
this processing, all the useful external effects of R(n) have n’ as their source. Similar pro-
cessing is done for the e-preconditions of the nodes of R(n") (lines 12-18). Finally, all the
descendants of n” are removed from the HTN (lines 20-22), and the partial orderings of HTN are
updated to reflect this removal (line 23). Apart from removing the orderings imposed by the
expansions of nodes in descendents(n’), this step also involves redirecting any ordering rela-
tions that were inherited from ancestors of n’ back to n’ (see the discussion in section 3.2.1).

Procedure Repair-Failing-Filter-Condition-Validation (vy :(E ,,,C ng), HIN:(P (T ,0 JI).T°.DY)
1 begin
2 Remove-Validation(v,)
3 find n’ € Ancestors (ng)\I{nys} s.t. C € filter-conditions(n’)
4 [*replace reduction below n’*/
5 foreach n. € R(n’) s.t. children(n.)=0
6 do foreach v":(E’,n’, ,C’,n’y) € e-conditions(n,)
7 do if v’ € e-conditions(n’)
8 then do Remove-Validation(v ")
9 Add-Validation(v":(E’n’,C’ ') od

10 else Remove-Validation(v")

i1 fi od

12 foreach v":(E’ ", .C’n’y) € e-preconditions(n,)

13 do

14 if v’ € e-preconditions(n)

15 then do Remove-Validation(v"’)

16 Add-Validation(v"{{E’,n", ,C’ ") od
17 else Remove-Validation(v") fi

18 od od

19 /* unlinking descendents (n”) from HTN */

20 T® « T —~descendents(n")

21 T & T-descendents(n”)

22 D « D-(did € D N\ dg descendents(n”) }
23 Update-Orderings(O , descendents(n)) od fi

24 /*Mark n’ as a refit-task of type replace-reduction*/
25 Te«TuU(n)

26 refit task-type(n”’) « ‘‘replace-reduction’

27 end

Figure 7. Procedure for repairing failing filter condition validations

% This type of applicability failure is very serious as it may require replacement of potentially large parts of
the plan being reused, there by increasing the cost of refitting. In [13,17], we show that PRIAR’s retrieval and map-
ping strategy tends to prefer reuse candidates that have fewer applicability failures of this type.

22

Finally, n’ now constitutes an unreduced refit-task and so it is added to T (lines 25-26).
(Notice that a difference between this and the Prune—Validarion procedure is that in this case
the e -preconditions of the replaced sub-reduction are redirected rather than pruned.)

3.2.4. P-Phantom-Validations—Exploiting Serendipitous Effects

When R° is being reused in the new planning situation of P", it is possible that after the
interpretation, some of the validations that R’ establishes via step addition can now be esta-
blished directly from the new initial state. Such validations are referred to as p -phantom vali-
dations. More formally, a validation v, :(E ,n,,C ,n,) is considered a p -phantom-validation of

R' if ng#n; and I"—E. Exploiting such serendipitous effects and removing the parts of the

plan rendered redundant by such effects can potentially reduce the length of the plan. Once
the annotation verification procedure locates such validations, PRIAR checks to see if they can
actually be established from the new initial state. This analysis involves reasoning over the
partially ordered tasks of the HTN to see if through possible introduction of new ordering rela-
tions, an effect of n; can be made to satisfy the applicability condition supported by this vali-
dation. The facilities of typical nonlinear planners can be used to carry out this check. When
a p-phantom validation v, is found to be establishable from 5, the parts of the plan that are
currently establishing this validation can be pruned. This is achieved by pruning v, (see sec-
tion 3.2.1). Curmrently, we do not allow PRIAR to add steps (cf. white knights [3]) or cause
new interactions while establishing a p-phantom validation, and exploit the serendipitous
effects only if doing so will not cause substantial revisions to the plan.

3.2.5. Example

Figure 8 shows R?, the HTN produced by the annotation verification procedure for the
3BS—S5BS1 example. The input to the annotation verification procedure is the interpreted
plan R' discussed in section 3.1. In this example, R’ contains two missing validations
corresponding to extra goals, a failing phantom validaton and a failing filter condition valida-
tion. The fact On(K,Table), which is marked owr in If, causes the validation
(On (K ,Table),n;,On(K ,Table),n ¢) in R’ to fail. Since this is a failing filter condition valida-
tion’, the reduction that first introduced this condition into the HTN would have to be replaced.
In this case, the condition On(K ,Table) came into the HTN during the reduction of node
ng:Do[Puton (K J)). Thus, the annotation verification process removes R(ng) from the HTN,
and adds a replace reduction refit task ng:Do[Puton(K J)]. The e-preconditions of the
replaced reduction, (Clear (K).n7,Clear (K),n16) and (Clear (J),ng,Clear (!),n) , arc redirected
such that the refit task ny becomes their destination. Similarly the e-condition of the replaced

% We follow the convention of [30] and classify Oa(X,?x) as a filter condition rather than a precondition.
Some effects of the plan depend on the binding of ?x and one way of correctly propagating the effects when the
binding of ?x changes is to treat this reduction-time assumption as a filter condition.

po

(1‘rjuo—
(r'H)uo~

o..dco

(n)1e0|0

%

ejels

jeob

1SUSS<-SHE 40} uc|] paylsaa-uopejouny

g gy

-

| —

yEB)104

uogonpey ededay
[(rM)uoindloq :6u

/4

(o)

Y88} ifj81 [#ob wix.
(' Vuo :ue

[O1uoly o:. (s Dve-exmyy 435

¥s®})jo4 (908 wix.
[(v)1ea0ly :1iu

{(r*w)uolvy :gu

vopdy-voing g1

|

Wrivo we

yso} Jij0d
ozjwoyusydag

[(1)seo10]lV :s

NOWOV
[rrivonglog eu

('rivo :ue
(r'rivo-exeyy yog

Weluoly :zu

+S8SS :n__ Q..A__V._“.w%_mxvﬂm
[0 uonienjis induj
3] | rll W ! H
r L A
A
1

ey

/?33.3.6
IV 1T

\O_rmc_ 4]

(*x)uo
(w*7)vo
(eiqen‘))uo
{siqeni'm)uo

(1)isejy

lu
eoje)s Induy

reduction, (On(K J).ne0r ™ "\ ng) is redirected such that ng becomes the source. These
last two steps ensure tha' ible reduciion of ng will be aware of the fact that it is
expected to supply the e - and consume ~ -preconditions of the replaced reduction.

Next, the fact Cic. .), which is marked ouwt in I° causes the validation
(Clear (1), ,Clear (I),ns) to fail. Since this validation supports the phantom goal node n,, the
annotation verification procedure undoes the phantomization and converts ns into a refit task
ns:Achieve[Clear (1)} to be reduced. Once this conversion is made, ns longer needs the failing
validation from n;, and it is removed.

Finally, the goals Clear(M) and On(L.K) of G' are extra goals, and are not supported
by any validation of the HIN. So, the refit tasks njg:Achieve[On(L,K)] and
nyAchieve[Clear (M)] are created and added to the HTN, in parallel to the existing plan such
that m<np<ng and m<n;<ng. The node n;; now supports the validation
(On(L K),n10,0n(L.K)ng) and the node ny supplies the validation
(Clear (M),ny,Clear (M),nG).

Notice that the HTN shown in this figure corresponds to a partially reduced task network
which consists of the applicable parts of the old plan and the four refit tasks suggested by the
annotation verification procedure. It has a consistent validation structure, but it contains the
unreduced refit tasks nyg, 11y, ng and ns.

3.2.6. Complexity of Annotation Verification

In [13], we show that the repair actions involved in the annotation verification process can all
be carried out in O (N/2), except for the steps involving interaction detection when new valida-
tions are introduced during the repair of missing validations and p -phantom validations. This
latter step essentially involves checking for the truth of an assertion in a partially ordered plan.
It is known that under the TWEAK representation (which does not allow conditional effects and
state independent domain axioms), this step can be carried out in O(Np3) time [3]. Thus, the
worst case complexity of the repair actions is O (N7). Since there cannot be more than |V|
failing validations in a plan, the complexity of the overall annotation verification process itself
is O(IVINS) (where |V] < ENp as mentioned previously). Thus, the annotation verification
process is of polynomial (O (N5')) complexity in the length of the plan.

3.3. Refitting

At the end of the annotation verification, R® represents an incompletely reduced HTN with a
consistent validation structure. To produce an executable plan for P?, R® has to be com-
pletely reduced. This process, called refitting, essentially involves reduction of the refit tasks
that were introduced into R® during the annotation verification process. The responsibility of
reducing the refit tasks is delegated to the planner by sending R? to the planner. An important
diffcrence between refitting and from-scratch (or generative) planning is that in refitting, the

25

planner starts with an already partially reduced HTN. For this reason, solving P" by reducirg
R? is less expensivse on the average than solving P” from scratch.

The procedur: used for reducing refit tasks is fairly similar to the one the planncr nor-
mally uses for reducing non-primitive tasks (see section 1.4), with one important extcnsion.
An important consideration in refitting is to minimize the disturbance to the applicable parts of
R? during the reduction of the refit tasks. Ideally, it should leave any already established pro-
tection intervals of HTN unaffected. To ensure this conservatism of refitting, the default
schema selection procedure is modified in such a way that for each refit task, »,, it selects a
schema instance that is expected to give rise to the least amount of disturbance to the valida-
tion structure of R?. The annotations on n, guide this selection by estimating the effect of
the reduction of n, on the rest of the plan. (Section 3.4.1 contains a brief discussion of this
heuristic control strategy.) Once the planner selects an appropriate schema instance by this stra-
tegy, it reduces the refit task by that schema instance in the normal way, detecting and resolv-
ing any interactions arising in the process.

A special consideration arises during the reduction of refit tasks of type replace-
reduction. After selecting a schema instance to reduce such refit tasks, PRIAR might have to do
some processing on the HTN before starting the task reduction. As we pointed out during the
discussion of failing filter condition validations (section 3.2.3.3), when a node n is being re-
reduced it is expected that the new reduction will supply all the e-conditions of n and will con-
sume all the e-preconditions of n. If the chosen schema instance does not satisfy these expec-
tations, then the validation structure of the plan has to be re-adjusted. PRIAR does this by com-
paring the chosen schema instance, §;, and the e-conditions and e-preconditions of node n
being reduced, to take care of any validations that §; does not promise to preserve. It will (i)
add refit tasks to take care of the e-conditions of n that are not guaranteed by S;, and (ii)
prune parts of the HTN whose sole purpose is to achieve e-preconditions of n that are not
required by S;.

An altemative way of treating the failing filter condition validations, which would obviate
the need for this type of adjustment, would be to prune the e-preconditions of n at the time of
annotation verification itself, and add separate refit tasks to achieve each of the e-conditions of
n at that time. However, this can lead to wasted effort on two counts:

(1) Some of the e-preconditions of n might actually be required by any new reduction of n,
and thus the planner might wind up reachieving them during refitting, after first pruning
them all during annotation verification.

(2) Some of the e-conditions of n might be promised by any alternate reduction of n, and
thus adding scparate refit tasks to take care of them would add unnecessary overhead of
reducing the extra refit tasks.

In contrast, the only possible wasted effort in the way PRIAR treats the failing filter condition
validations is that the annotation verification procedure might be adding refit tasks to achieve

26

validations (say to sopport the conditions of the parts of the plan which provide e-
preconditions to the replaced reduction) that might eventually be pruned away during this latter
adjustment.

3.3.1. Example

Figure 9 shows the hierarchical task reduction structure of the plan for the S5BS1 problem that
PRIAR produces by reducing the annotation-verified task network (shown in Figure 8). (The
top down hierarchical reductions are shown in left to right fashion in the figure. The dashed
arrows show the temporal precedence relations developed between the nedes of the HTN.) The
shaded nodes in the figure correspond to the parts of the interpreted plan R' that survive after
the annotation verification and refitting process, while the white nodes represent the refit tasks
added during the annotation verification process, and their subsequent reductions.

During refitting, the planner reduces the refit task Ac.ieve{Clear(/)] by putting K on
Table, realizing that even though putting K on / looks locally optimal, it causes more distur-
bance to the validation structure of R® (see below). The extra goal refit task
Achieve[Clear (M)] is reduced by putting L on K; and this decision leads to the achievement
of the other extra goal refit task Achieve[On(L ,K)] as a side-effect. As K is on Table by this
point, the planner finds that the replace reduction refit task Do [Puton(K ,J)] can after all be

AEAT-TASK0028 REPLACE
(PUT-BLOCK-ON-BLOCK K Jf)

X205 CORY|
‘{-(m .a}

" \GOZI7 AGTION .
{PUT-BLOCK~OH-BLOCK J = —

= |(@EAATop
-
8 PrTOM 4 = == = = = = =

(ONL'E \

NDGOTI TGOAL |~ = 097 PHANT '
FEFTT-TABKOO15 EXTRA-GOAL | | LICLEARTOP L) S~ (GEARTOR 5 Y
(GLEARTOP M) NDO074 -ACTION T~ 102 PAOATIVE

(PUT-BLOCK-ON-BLOCK L K) (PUT- 8 OCK~ON-8LOCK-AGTION L K)

—

Figure 9. The plan produced by PRIAR for 3BS—S5BS1

27

reduced by another instantiation of the same schema that was used to reduce it previously'®,

3.4. Issues of Control

In this section we will bricfly address the issues of control in PRIAR’s plan modification pro-
cess. The purpose is to explain the role played by the plan validation structure in controlling
refitting and retrieval. For the detailed development of these control strategics, the reader is
referred to [15,17,13).

3.4.1. Conservative Control of Refitting

To derive maximum benefits from modification and reuse, and to prevent the possibility of the
refitting process degenerating into from-scratch planning, care must be taken to ensure that the
reduction of the refit tasks would cause minimum disturbance to the parts of the plan that are
already applicable in the new situation. PRIAR exploits the annotated validation structure of the
plan to estimate the disturbance caused by the reductions of refit-tasks to the rest of the plan,
and uses this estimate to select among the schema instance choices for reducing the refit tasks.

To estimate the disturbance caused by individual task reduction choices, PRIAR develops
the notion of the task kernel of a refit task. The task kemel encapsulates the set of validations
that have to be preserved by any reduction of that node to leave the validation structure of R®
undisturbed; it is defined in terms of the node annotations. The reduction choices are ranked
by the degree to which their applicability conditions and effects preserve the validations of the
task kemnel of the refit task. In the 3BS—S5BS1 example above, this control strategy recom-
mends that the planner reduce the refit task A [Clear ()] by putting K on Table rather than on
L, M, orJ (even though the last choice would appear locally optimal as it achieves the extra
goal On(KJ) '), because this causes the least amount of disturbance to the validation struc-
ture of R®. Similarly, for the refit task Achieve[Clear (M)], the control strategy recommends
reduction by putting L on K rather than on Table, the other available choice. This allows it to
achieve the second extra goal refit task as a side effect. A detailed description of this control
strategy is beyond the scope of this paper, and can be found in [15, 13].

3.4.2. Controlling Mapping

While mapping is not a serious problem if the current plan itself is being modified due to some
change in the specification, it becomes an important consideration in the case of modification
during plan reuse. There are typically several semantically consistent mappings between
objects of the two planning situations, P° and P", and the selection of the right mapping could

19 If the planner chcoses to reduce this refit task in the beginning, then it would have bound the location of K
is on I at that time. Then, since the location of K changes during the planning, the task would have to be re-
reduced. Such a re-reduction should not be surprising as it is a natural consequence of hierarchical promiscuity al-
lowed in most traditional hierarchical planners (see [36] for a discussion).

U1 This locally inoptimal choice is the characteristic of the sussman anomaly. Putting K on J at this juncture
would lead to backtracking, as it affects the executability of the Puton(J /) action.

28

considcrably reducc the cost of modifying the chosen plan to conform to the constraints of the
new problem. To do such sclection, the matching mectric should be able to estimate the
expected cost of modifying R to solve P". In PRIAR modification framework, the cost of
refitting R° to P" can be estimated by analyzing the dcgree of match between the validations
of R° and the specification of P*, for various mappings {o;}. We have developed a heuristic
ordering strategy which ranks the different mappings based on the number and the type of vali-
dations of the old plan that arc dependent on the input state and goal state features of the old
planning situation, which will be preserved in the new problem situation. The rationale behind
this heuristic—that the cost of refitting depends both on the number and type of validations of
the old plan that have to be re-established in the problem situation—should be intuitively obvi-
ous given our discussion of annotation verification. In our example, this strategy allows PRIAR
to choose the mapping [A —L,B—K,C—J] over the mapping [A—K ,B—J,C—/] while
rcusing the 3BS plan to solve the S5BS1 problem. In is instructive to note that while this stra-
tegy is used to choose betwszen two reuse candidates corresponding to the same plan with
different mappings in the current example, in general the strategy can also choose between
reuse candidates using different plans. By basing retrieval on the appropriateness of using the
old pian in the new problem situation, this strategy strikes a balance between purely syntactic
feature-based retrieval methods, and methods which require a comparison of the solutions of
the new and old problems to guide the retrieval (e.g. [2]). Further details of this retrieval and
mapping strategy can be found in [17,13].

4. Analysis and Evaluation of PRIAR

4.1. Empirical Evaluation

The PRIAR modification framework described in this paper has been completely imple-
mented in COMMON LISP and runs as compiled code on a Texas Instruments EXPLORER-II Lisp
Machine. The hierarchical planner used in PRIAR is a reimplemented version of NONLIN
{30,7]). Performance evaluation experiments were conducted in an extended blocks world
domain (see Appendix B for the domain specification) to quantify the savings in planning
effort afforded by the modification framework. (PRIAR is also being adapted to provide an
incremental planning capability for process planning in concurrent engineering environments. A
prototype version is curmrently operational; see [21] for details.) The evaluation experiments
consisted of solving several blocks world problems by reusing a range of similar to dissimilar
stored plans. In each experiment, statistics were collected for solving the new problem from
scratch and for solving it by modifyirg a given plan. A comprehensive listing of these statis-
tics can be found in [13]. '

The cost of retrieval was factored out in all these experiments by providing PRIAR with a
specific existing plan R° to be reused while solving the new problem P". However, the
appropriate mapping, a, between R° and P" is still chosen by the retrieval procedure. Such a

29

testing strategy is motivated by our desire to measure the flexibility of th~ modification frame-
work by forcing PRIAR o solve P by reusing differcnt R® s,

The problems used in these experiments are all from the blocks world. Problems 3BS,
4BS, 6BS, 8BS ctc. are block stacking problems with three, four, six, eight, etc. blocks respec-
tively on the table in the initial state, and stacked on top of cach other in the final state. Prob-
lems 4631, 5BS1, 6BS1 etc. correspond to blocks world problems where all the blocks are in
sr.ne arbitrary configuration in the initial state, and stacked in some order in the goal-state. In
particular, S5BS1 cormresponds to the example that we discussed in the previous sections. A
complete lisiing of the test problem specifications can be found in [13].

Table 1 presents representative statistics from the experiments. It compares planning
times (measured in cpu seconds), the number of task reductions, and the number of detected
interactions, for from-scratch planning and for planning with reuse, in some representative
experiments. The second entry in Table 1 corresponds to the 3BS—5SBS1 example discussed
in the previous sections. The last column of the table presents the computational savings
gained through reuse as compared to from-scratch planning (as a percentage of the from

R° > pP" P" From Scratch Reuse R°® Savings
(%)
3BS—»4BS1 [4.0s, 12n, 5i] [24s,4n,1i) 39
3BS—S5BS1 [1245, 17n, 22i) [5.2s, 8n, 12i] 58
5SBS—7BS1 [38.65,24n, 13i] | [1l.1s, 121, 19i] 71
4BS1-8BS1 [793s, 28n, 14i) [22.25, 18n, 18i] 71
5SBS—8BS1 [793s, 28n, 14i} [10.1s, 14n, 7i) 87
6BS—9BS1 [184.6s, 32n, 17i] {18.1s, 171, 17i] 90
10BS-»9BS1 [184.6s, 32n, 17i) [65s, 5n,2i) 96
4BS—10BS1 [401.5s, 36n, 19i) [52.9s, 30n, 33i] 86
8§BS—10BS1 [401.5s, 36n, 19i] (14.5s, 12n, 7i) 96
3BS—12BS1 [1758.65,44n,23i) | [77.1s, 40n, 38i] 95
5BS—12BS1 [1758.65, 44n,23i) | [51.8s, 32n, 26i] 97
10BS—12BS1 | [1758.65, 44n, 23i) [21.2s, 13n, 7i] 98

Table 1. Sample statistics for PRIAR reuse
30
‘ .
e |

scratch planning time).

The entrics in the table show that the overall planning times as well as the number of
task reductions improve significantly with reuse. This confimms that reuse and modification in
the PRIAR framework can lead to substantial savings over generative planning alene. The rela-
tive savings over the entire corpus of (approximately 70) experiments ranged from 30% to
98% (corresponding to spcedup factors of 1.5 to 50), with the highest gains shown for the
morc difficult problems tested. The average relative savings over the entire corpus was 79%"2.

We also analyzed the variation in the savings accrued by reuse in terms of the similarity
between the problems and the size of the constructed plans. Figure 10 shows the plot of this
variation. It plot shows the computational savirgs achieved when different blocks world prob-
lems are solved by reusing a range of existing blocks world plans. For example, the curve
marked 7BS1 shows the savings afforded by solving a particular seven-block problem by reus-
ing several different blocks world plans (shown on the x-axis). Figure 11 summarizes all the
individual variations by plotting (in logarithmic scale) the from-scratch planning time, and the
best and worst case reuse planning times observed for the set of blocks world problems used in
our experiments. It shows an observed speedup of one to two orders of magnitude.

Apart from the obvious improvement in reuse performance wiih respect to similarity
between P* and P°, these plots bring out two other interesting characteristics of the PRIAR

S

a

v

i

n

g9

S

t !
r % 30
° 20-.
m 104

° 3 bs L i 4 1 'y i :

38S 4BS 4BS1 SBS 6BS 78S 78S1 88S 8BSt 9BS
Reused Problems

— 7BS1 -~ 8BS1 — 10BSt1 — 12BS1

Figure 10. Variation of performance with problem size and similarity

12 The cumulative savings were much higher, but they are biased by the higher gains of the more difficult
problems.

31

rcuse behavior:

1. Flexibility and Conservatism of Modification:
As we pointed out earlier, a flexible and conservative modification strategy provides the
capability to effcctively reuse any applicable parts of a parially relevant plan in solving a

new planning problem. An important characteristic of such a modification strategy is that
is that as the size of P" increases, the computational savings afforded by FRIAR stay very
high for a wide range of rcused plans with varying similarity. This behavior is brought
out by the plots in Figures 10 and 11. Consider, for example, the plot for the 12831 in
Figure 10. As we go from a dissimilar plan R = 3BS to a very similar plan R° = 9BS,
the savings vary between 95% and 98% (corresponding to a variation in the speedup fac-
tor of 20 to 50). One of the important benefits of a flexible reuse framework is that the
best match retrieval may not be critical for the utility of plan reuse. This may allow the

use of simple and computationally efficient retrieval strategies [17].

2. Performance improvement with respect to the size of the planning problem:
An interesting pattern observed in PRIAR's performance is that when it modifics the same
plan R to solve several different problems, the computational savings increase with the
size of the problem being solved. Consider for example the cases of 3BS—7BS1 vs.
3BS-»12BS1 in Figure 10. The improvement with size is further characterized by the
statistics in Table 2, which lists the performance statistics when the 3BS plan is used to
solve a set of increasingly complex blocks world problems. This can be explained in

e

P
a A
n ¢ 1000 ?é
np ————=9
i u it o
n e
g s /,o_"-’: n,,’
° o2 n .
T e 10 1 ozq_—,—m&a—__ﬁ__———ﬁﬁ
i .?o_:___.?— ——
m = a—"
e 1 8 . -
4BS1 5851 68St1 7851 8BSt 98s1 1081 12851
Blocks World Problems
‘- From Scratch 0- Reuse (Worst Case) ‘8- Reuse (Best case)

Figure 11. From-scratch vs. best and worst case reuse performance

32

R > P" P® From Scratch | Reuse R° Savings
(cpu sec.) (cpu sec.) | (%) speedup
3BS—4BS1 40 24 39 1?(15m
3BS—5BS! 8.4 43 ! 49 1.9
3BS—7BSI 38.6 ;5'.6 59 25
2BS-8BS1 79.3—_ 17.4 78 4.6
3RS-31UBSI 4015 714 | 86 56
3BS—12BSI 1758.6 77.1 95 228

Table 2. Variation of reuse performance with problem size

terms of the search process in the space of the plans. In hierarchical planning, as the size
of a planning problem increases, the effective branching factor of the search space also
increases. For example, for a g goal problem, where the average number of choices for
reducing a goal in the domain is ¥, the branching factor at the first level will be propor-
tional to gx¥, i.e., the branching factor increases with g Boar B is the branching factor
of the search space, A is the operator distance between the problem specification P* and
the plan R", and A’ is the operator distance between the R® and R”, then we can quan-
tify the relative reduction in the explored search space during plan reuse as B4 [23, 13].
Thus, as B increases, so will the relative reduction in the search space. Thus, as problem
size increases, the savings afforded by reuse tend to become more significant.

4.2. Analysis

In this section we shall analyze the completeness, coverage, flexibility and efficiency of the
PRIAR framework.

4.2.1. Completeress

To demonstrate completeness, we must show that PRIAR can solve any new planning problem
by correctly modifying any plan, whose validation structure is describable within its representa-
tion language. If we assume that the underlying planning strategy is complete, the complete-
ness of PRIAR can be established by demonstrating that for any given plan R° and a new

13 Another way of understanding this is that as the size of the the planning problem increases, the number of
ways of interpreting the modal truth criterion to achieve a goal (in Chapman’s model of nonlinear planning {3])
also increases.

3

problem P7, PRIAR provides an HTN with a consistent validation structure to the planner. The
validation structure based modification is complete, in that it will correctly handle all types of
applicability fatlures that may arise during plan modification, and provide the planner with a
partally reduced HTN with a consistent validation structure. In particular, our dcfinition of
inconsistencies (sce §2.2) captures all types of applicability failures hat can arise duc tc a
change in the specification of the problem; and our annotation verification procedure provides
methods to correctly modify the plan validation structure to handle cach type of inconsistency

(sce section 3.2).

Proposition: The HTN at the ead of the Annotation-verification procedure is
a partially reduced plan with a consistent validation structure.

When a plan is being reused in a new problem situation, the inconsistencies in the validation
structure originate from the differences in the initial and final state specification; the interpreta-
tion procedure marks these differences. The overall plan can be seen as a black-box, which
consumes the validations in the initial validation state A°(n;) and supplics the validations in
the final validation state A?(m). Thus the only way the differenzes in the problem
specifications can cause inconsistencies in the valication structure of the plan is by affecting
the validations in A®(n;) and A?(ng)'*. Thus, the annotation-verification procedure would
only have to check these validations.

The only ways in which the validations of Af(n;) and AP(ng) can be affected by the
changes in the problem specifications are: (i) some validations of A*(n;) fail because of the
disappearance of their supporting effects, (ii) some validations of A°(ng) are not required
because they are supporting unnecessary goals and finally (iéi) some goals of the new problem
are not supported by any validations of AP (ng). These are precisely the cases that are defined
as the inconsistencies in the validation structure of a plan (in section 2.1). We have seen that
the annotation-verification process modifies the plan validation structure to take care of each of
these three possibilities, and also to exploit any serendipitous effects. The repair actions
involve either removing some parts of the plan, or adding high level non-primitive tasks to the
plan to re-establish missing or failing validations. To prove that the resulting partially reduced
HTN has a consistent validation structure, we need only show that the repair actions themselves
do not introduce any inconsistencies.

There are three kinds of changes made to the validation structure of R’ during thesc
repair tasks: (i) some existing validations are removed, (ii) some existing validaticns are re-
directed, or (iii) some new validations are added. We can easily show that PRIAR’s methods for
removal of unnecessary validations, and redirecting validations (to the ancestors of the source

' Of course, while taking care of some of the affected validations, the annotation verification procedure might
prune or redirect some internal validations of the plan (see the procedures for pruning validations and repairing fail-
ing filter condition validations).

or destiration nodes) do not introduce any new inconsistencies. Thus the only remaining case
is the additon of a new validation. Here too, there are two possibilities:

(1) When a failing precondition validation v :(E,n;.C ,ny) is repaired by adding a new valida-
tion, v, :(E,n,,C ,ng), such that ny<n,<ny. In this case, the only possible inconsistency
could be failure of v,. For v, to fail, there should exist a node n such that { (n,<n<n,)
and effects(n) = —E. Since, n;<n,<ny (see section 3.2.3.1), this will also imply that

((m<n<n,). That is, v itself could not have been established. Since v was established
previously, by refutation we know that v, cannot be failing.

(2) When completely new validations are introduced into HTN to take care of missing valida-
tions or p -phantom-validations. In these two cases, we have seen that the repair actions
invoke the planner’s truth criterion to make sure that the new validation does not lead to
the failure of any existing validations.

Thus, all the repair actions remove the inconsistencies in R, without adding any new incon-
sistencies. Consequently, the HTN after annotation verification, R, has a consistent validation
structure.(]

To summarize, the annotation-verification based reuse framework presented here is com-
plete in the sense that if P" is a problem that PRIAR’s planner can solve from scratch, then
PRIAR can take any arbitrary previously developed plan, R°, a new problem P" and provide
R? which can then be reduced by the planner to give a plan for P". This is because we are
able to list with certainty all the possible inconsistencies that can arise in the validation struc-
ture of a plan during reuse and provides methods to remove the inconsistencies without intro-
ducing any new inconsistencies.

Notice, however, that while the consistency of annotation-verified plan R? allows the
planner to try to solve for P" by reducing R® rather than starting from scratci, it cannot by
itself ensure that a plan for P" can be found without backtracking over R?. For this latter pro-
perty to hold, the abstraction used in the task reduction schemas representing the domain
should have the ‘‘downward solution’® property [31] where the existence of an abstract plan
implies the existence of specializations of this solutions at each lower level (see below).

4.2.2. Coverage

Here we discuss how well the modification capability provided by our theory covers the range
of possible plan modification tasks. The validation structure developed here covers the intemal
dependencies of the plans produced by most traditional hierarchical planners. The captured
dependencies can be seen as a form of explanation of correctness of the plan with respect to
the planner’s own domain model. By ensuring the consistency of the validation structure of the
modified plan, PRIAR guarantees correctness of the modified plan with respect to the planner.
However, it should be noted that as the dependencies captured by the validation structure do
not represent any optimality considerations underlying the plan, the optimality of modification

35

——— a

is not guaranteed. Further, since the modification is integrated with the planner, failures arising
from the incorrectness or incompleteness of the planner’s own domain model will not be
detected or handled by the modification theory15 {18]. Of course, these should not be con-
strued as limitations of the theory, as the goal of the theory is to improve the average case
efficiency of the planner.

4.2.3. Flexibility and Efficiency

Computational savings in modifying plans in the PRIAR framework stem from the fact that the
annotation verification process expends a polynomial amount of processing on R’ to produce a
partially reduced HTN, R?, which can, on the average, be reduced with exponentially less effort
compared to planning for P" from scratch. While we cannot expect a reduction in the
theoretical complexity of planning unless the domain schemas have the *‘‘downward solution
property’’ (see above), typically there is a strong performance improvement by starting the
planner off with R?. The empirical results discussed in section 4.2.1. provide support to this.

PRIAR reuse strategy is flexible in that it can effectively modify any existing plan to solve
any new problem. Flexibility, however, is a double-edged sword—while it improves the cov-
erage of the modification strategy by allowing a plan to be reused in a wide variety of new
situations, it also leads to situations where the plan is reused in a totally inapplicable situation.
In PRIAR, however, this does not pose a serious problem because the annotation verification
procedure is of polynomial complexity. In the worst case, when none of the steps of R’ are
applicable in the new situation, annotation verification will return a degenerate HTN containing
refit tasks for all the goals of P". In such extreme cases PRIAR may wind up doing a polyno-
mial amount of extra work compared to a pure generative planner.'® In other words, the worst
case complexity of plan modification remains the same as the worst case complexity of genera-
tive planning. However, on the average, PRIAR will be able to minimize the repetition of plan-
ning effort (thereby accruing possibly exponential savings in planning time) by providing the
planner with a partially reduced HTN that contains all the applicable parts of the plan being
modified, and conservatively controlling refitting such that the already reduced (applicable)
parts of R? are left undisturbed. The claims of flexibility and average case efficiency are also
supported by the empirical evaluation experiments that were conducted on PRIAR, as discussed
in section 4.1.

15 In [19] we discuss some preliminary ideas about dealing with failure of validations established by modules
external to the planner.

16 It should also be noted that the mapping and retrieval strategy developed in [17, 13] helps in ruling out such
degenerate cases to a large extent.

S. Comparison to Previous Work

Early rescarch in plan reuse and replanning was done in conjunction with the work on STRIPS
planner [6]. The STRIPS' triangle-table based approach to replanning suffered from many limi-
tations. As we pointed out in section 1, STRIPS was unable to modify the internal structurc of
its remembered macro-operators to suit new problem situations, and consequently could reuse
them only when either the entire macrop or one of its subsequences was applicable in the
current situation. Its only response to exccution time failures was restarting the plan from an
appropriate previously executed step. Such a capability is in general not sufficient to provide a
robust replanning capability, as it is very rare that the execution time failures are so benign as
to be repaired by restarting the plan from an earlier point. A recent hierarchical linear problem
solver called ARGO [11] tries to partially overcome the inflexibility of the macro-operator based
reuse by remembering macro-operators for each level of its hierarchical plan. However, it too
lacks the capability to modify the intermediate steps of a chosen macro-operator, and is conse-
quently unable to reuse all the applicable portions of a plan.

Hayes [9] was the first to suggest the idea of explicitly represented internal dependencies
for guiding replanning. However, his framework was very domain-specific and the only
replanning action allowed in it was to delete a part of a plan, thereby permitting the planner to
reachieve some higher level goals in the hierarchical development of the plan. NONLIN [30,29]
was the first hierarchical planner to advocate explicit representation of goal dependencies to
guide planning. Its GOST data structure is essentially a list of protection intervals associated
with the plan, and is used during the planning to guide the intercction detection and resolution.
Daniel [5] exploited NONLIN’s plan structure to develop a framework for representing decision
dependencies to aid in backtracking during planning. The intent was to enable NONLIN to do
dependency directed backtracking during plan generation. While Daniel’s research did not
explicitly consider replanning or reuse problems, it generalized Hayes’ notion of decision
graphs significantly to capture inter-decision dependencies induced by NONLIN. However, here
again, the development was very planner specific. There was neither a formal characterization
of the remembered dependencies, nor a systematic exploration of their utility in plan
modification. Recently, Morris et al [24] started exploring the utility of TMS-based data
dependency methods for representing these decision-graph structures to provide a dependency-
directed backtracking capability during planning. In the following we discuss the relation
between PRIAR modification framework and these data dependency methods:

Any dependency directed plan transformation scheme must be able to handle the follow-
ing three distinct issues: (i) What choice points would have to be revoked to handle the change
in the specification or the environment, (ii) How to effectively retract the decisions that were
made in the context of those choice points, and (iii) How best to guide the planning after the
retraction, to satisfy the overall goals. While decision graphs, context layered world-models
[34] and TMS based data dependency frameworks provide strategies for handling ii, they do
not provide guidance on i and iii. In contrast, we have shown that the explicit planner-

37

independent representation of the causal dependencies of a plan (as its validtaion structure) pro-
vides a powerful medium for deliberating on what types of modifications are required and how
to guide the planner in carrying out those modifications.

Wilkins' framework for guiding replanning and execution monitoring in SIPE [35] comes
closest to PRIAR’s plan rcuse and modification framework in its treatment of applicability
failures. (For a detailed discussion of how PRIAR's modification framework is used to guide
and control execution monitoring and replanning, see [20].) SIPE’s domain-independent replan-
ning actions are similar to the repairs to the plan validation structure that are suggested by
PRIAR’s annotation-verification process. However, SIPE does not attempt to explicitly character-
ize the role played by the individual tasks of the HTN in the validation of the rest of the plan.
Consequently, some of its replanning actions are planner dependent, and are not stated for-
mally. In contrast, PRIAR’s annotated validation structure gives a clean framework to state the
replanning actions precisely and explicitly. Another important difference between the
modification strategies of PRIAR and SIPE is that the latter does not attempt to control the
replanning once the appropriate replanning actions were suggested to SIPE. As we discussed
briefly in section 3.4.1 PRIAR employs a heuristic control strategy grounded in the pian valida-
tion structure for this purpose.

In contrast to the dependency directed debugging strategies such as {27, 8,28] which aim
to compensate for the inadequacies of the generative planner by debugging the generated plans,
PRIAR aims to improve the efficiency of planning by ensuring the correctness of modification
with respect to the planner. The plan debugging strategies proposed in GORDIUS and CHEF use
an explanation of the correctness of the plan with respect to an external (deeper) domain
model—generated through a causal simulation of the plan to guide the debugging of the
plan—to compensate for the inadequacies of the planner's own domain model. In contrast, the
plan modification strategy proposed in PRIAR utilizes the plan validation structure, an automati-
cally generated explanation of correctness of the plan with respect to the planner’s own domain
model, to integrate planning and plan modification and to ensure correctness of plan with
respect to the planner. Since the cost of debugging tends to be very high”. a fruitful avenue
of research might be to combine these strategies such that PRIAR’s strategies are used to
efficiently generate plans that are correct with respect to the planner, and the debugging stra-
tegies are used to test and debug these plans with respect to extemal domain models. In this
sense, PRIAR's strategies are complementary to these debugging strategies.

A significant amount of research in case-based reasoning addressed the issues involved in
the adaptation of stored plans to new situations (e.g., [1,8, 32]). In contrast to PRIAR, typically
these modification strategies are not integrated with a generative planner, are not concerned
with correctness and conservatism of modification, and are typically heuristic in nature. This is

' In [26], Simmons notes that the success of GORDIUS's Generate-Test-Debug paradigm rests on the presence
of a robust generator since debugging is very cosdy.

38

<

to a large extent a reflection of the characteristics of the domains in which these systems were
developed, where the need to avoid execution time failures is not as critical as the need to con-
trol access to planning knowledge. For example, PLEXUS [1], an adaptive planner, starts with a
highly structured plan library, and relies on the place of a plan in the background of other
plans in the library to guide adaptation. PLEXUS works as an interpretive planner, and its pri-
mary mode of detecting applicability failures is through execution time failures. When a
failure is detected, PLEXUS attempts to exploit the helpful cues from the new problem situation
to trigger appropriate refitting choices to repair those appiicability failures, and execute the
result in turn. Similarly, CHEF's [8] stored plans do not have explicitly represented dependency
structure, and they are modified by domain dependent modification rules to make the old plan
satisfy all the goals of a new problem. These modification strategies do not consider the inter-
nal causal dependency structure of the plan, and thus may lead to incorrect plans even relative
to the domain knowledge contained in the case-base and the modifier. CHEF presumes that its
retrieval strategy and modification rules are robust enough to prevent frequent occurrence of
such incorrect plans (as we discussed above, CHEF does test the correctness of its modification
through a simulation with respect to an extemal domain model). In contrast to PLEXUS and
CHEF, PRIAR is concerned with the correctness of the modified plan relative to the planner’s
own domain knowledge, and uses the plan validation structure to ensure this. This capability
is important both because debugging itself is a very costly operation (see {26,27]) and because
domain characteristics may put a very high premium on postponing all debugging to the execu-
tion time.

Finally, PRIAR’s approach to plan reuse is in the spirit of Carbonell’s [2] proposed metho-
dology for ‘‘problem solving by derivational analogy’’ which recommends remembering a full
derivational history along with every problem solution, and using it to guide its analogical
transformation later. PRIAR can be seen as a step towards the systematic exploration of the util-
ity of including one class of information—the plan validation structure—in the stored deriva-
tional trace.

6. Conclusion

We presented a theory of plan modification that utilizes the validation structure of the stored
plans to yield a flexible and conservative modification framework. The validation structure,
which constitutes a hierarchical explanation of correctness of the plan with respect to the
planner’s own knowledge of the domain, is annotated on the plan as a by-product of the initial
planning. Plan modification is characterized as a process of removing inconsistencies in the
validation structure of a plan, when it is being reused in a new (changed) planning situation.
Annotation verification, a polynomial time process, carries out the repair of these inconsisten-
cies. The repairs involve removing unnecessary parts of the HTN, adding new high-level tasks
to it to re-establish failing validations, and exploiting any serendipitous effects to shorten the
plan. The resultant partially reduced HTN with a consistent validation structure is given to the

39

planner for complete reduction. As the planner starts with a partially reduced HTN, it takes
sigrificantly less time on the average to produce a complete plan. This is supported by the
results of the empirical studies in blocks world, which demonstrated 20-98% savings
(corresponding to speedup factors of 1.5 to 50) over purc generative planning, with the highest
gains shown for the most complex problems tcsted.

We discussed the development of this theory in PRIAR, and characterized its complete-
ness, coverage, efficiency and limitations. PRIAR's modification theory enables a planner to
conservatively modify its plan in response to incremental changes in the specification, to reuse
its existing plans in new problem situations, and to efficiently replan in response to execution
time failures. While the plans made by PRIAR are at the same level of correctness as the ones
that are made by the planner from scratch, in practical terms, PRIAR allows the planner to solve
more problems in a ‘‘reasonable amount’’ of time and computational resources. This is very
significant, since it enlarges the set of problems that are practically solvable by the planner.
Currently, we are exploring the application of PRIAR modification strategy to more realistic
domains [21], and investigating the methodology of plan modification in complex domains
where the planner does not have access to all the domain knowledge and has to interact with
other specialized domain modules [19].

Acknowledgements

Lindley Darden and Larry Davis have significantly influenced the development of this work.
Jack Mostow and Austin Tate provided useful comments on previous drafts. Mark Drummond,
David Wilkins, Nils Nilsson, Marty Tenenbaum, Quiang Yang and reviewers of AAAI-90 and
IJCAI-89 provided several useful and pointers. To all, our thanks.

Appendix A. Trace output by PRIAR

This appendix contains an annotated trace of the PRIAR program as it plans for a blocks
, world problem by reusing an existing plan. Specifically, it follows PRIAR in soiving the SBP
- i - problem shown on the right in Figure A.1 by reusing an existing plan for solving the 6BS
problem shown on the left. This example is specifically designed to show hew PRIAR handles
the failing filter condition validations, unnecessary validations and p -phantom validations (the
capabilities that were not brought out in the example that was discussed in the paper).

In this example, PRIAR’s partial unification procedure generates two plausibie reuse candi-
dates for solving the SBP pioblem from the 6BS plan (lines 1-11). The plan kemel based ord-
ering then prefers one of those candidates (6BS, a=[A —L,C—0 ,B—P.D—M E-N]) as
better suited for solving the SBP problem (lines 13-19).

A
B /0\
c P
D o
E ~ Ollm| (M |
[al[sllc1ioll ellr | F reused in_> AN N
Input Situation Goal Input Situation Goal
P° eBs P sBp

Figure A.1. 6BS—5BP Modification problem

TAR> (plan-f blemn *Sbs-ph id xeuse t)
rying 1o solve the problem by reunng old plans

1P
2T
3 Calling...

4 (REUSE-PLAN :GOALS ((ON P O) (ON M N) (ON L P) (ON O M))

5 JINPUT ((BLOCK P) (CLEARTOP O) (ON O P) (ON L TABLE)
6 (ON P TABLE) (BLOCK O) (BLOCK N) (BLOCK M)

7 (PYRAMID L) (CLEARTOP M) (ON M N)))

8 Retrieving similar old plan

9 RETRIEVE: There are 2 possible Complete Matches. They are..

10 (({<Plan:6BS>) ((L A) (N E) (M D) (O C) (P B))

g ((<Plan::6BS>} ((L B) (NF) (M E) (O D) (PC)))

13 sesssaepp AN-KERNEL-BASED-ORDERING

14 The Plan Choices ranked best by the Plan-kemel based retrieval Process are
. 15 {({<Plan::6BS>} (0L A) (N E) (M D) (O) (P B))){18])

16 Choosing

17 [({<Plan::6BS>} ((L. A) (N E) (M D) (O C) (P B)))){18}

18 10 be reused to solve the current problem

19 Copying and Loading plan into memary

20 using the following plan
21 Plan Name: 6BS

41

Goals: (ONBO(ONCD)(ONDE) (ONEF) (ON A B)
Iniual Sute: (BLOCK D) (BLOCK B) (BLOCK AY (CLEARTCP A)
(BLOCK O) (CLEARTOP D) (CLEARTOP C) (CLEARTOP B)
(ON D TABLE) (ON C TABLE) (ON B TABLE) (ON A TABLE)
(BLOCK F) (BLOCK E) (CLEARTOP F) (CLEARTOP E)
(ON E TABLE))
Plan Kemel: #&<PLANKERNEL 10733054>
The plan is...
.

cansee

7: :PRIMITIVE (PUT-BLOCK-ON-BLOCK-ACTION E F) {Prencdcs:(21 22)] 15 des: (6 1))

6: -TRIMITIVE (PUT-BLOCK-ON-BLOCK-ACTION D E) [Prenodes:(18 19 7)] [Succnodes: (5 1)]
§: (PRIMITIVE (PUT-BLOCK-ON-BLOCK-ACTION C D) (Prenodes:(15 16 6)] [Succnodes: (4 1)]
4: :PRIMITIVE (PUT-BLOCK-ON-BLOCK-ACTION B C) [Prenodes:(1213 5)) [Succnodes: (3 1)]
3: :PRIMITIVE (PUT-BLOCK-ON-BLOCK-ACTION A B) [Prenodes:(9 10 4)) [Succnodes: (1)]

EggyRnrugLEyRyrRRRy

»
—

The mapping is [A~<L E-N DM C~0 B-P)

L] Next, the 6BS plan is interpreted in the SBP problem situation with the chosen mapping.
| The interpretation process, apart from marking various facts as in and out, finds that one of
the goals of the 6BS problem, On (N ,F), is unnecessary for solving SBP problem (line 57).
Figure A.2 shows the HTN of the 6BS plan after the interpretation process.

42 pretation

43 Mapping the retrieved plan into the current problem

44 The mapping used is: [A—L E-sN DM C—-0 B3P)

45 INTERPRET: adding fact (ON O P) to the initial state

46 INTERPRET: adding fact (PYRAMID L) to the initial sate

47 INTERPRET: adding fact (ON M N) 1o the initial state

48 INTERPRET: Marking the fact (BLOCK L) in init-suate out

49 INTERPRET: Marking the fact (CLEARTOP L) in init-sate :out
50 INTERPRET: Marking the fact (CLEARTOP P) in init-state :out
51 INTERPRET: Marking the fact (ON M TABLE) in init-state :out
$2 INTERPRET: Marking the fact (ON O TABLE) in init-state :out
53 INTERPRET: Marking the fact BLOCK F) in init-state :out

; 54 INTERPRET: Marking the fact (CLEARTOP F) in init-state :out
] S5 INTERPRET: Marking the fact (CLEARTOP N) in init-state zout
L 56 INTERPRET: Marking the fact (CN N TABLE) in init-suste :out
. 57 INTERPRET: Marking the goal (ON N F) in goal-state :unnecessary
? 58 INTERPRETation is over

Next, PRIAR starts the annotation verification process; figure A.3 shows the HTN after this
process. During the annotation verification process, PRIAR first considers the unnecessary vali-
dation supporting the unnecessary goal On(N ,F) (lines 59-65). The appropriate repair action
is to recursively remove the parts of the plan whose sole purpose is to achieve this validation.
In this case, PRIAR finds that the sub-reduction below the intermediate level node
NDO110: On (N ,F) (the node with a single asterisk in Figure A.2) will have to be removed
from the plan to take care of this unnecessary validation. Consequently, the annotation verified
plan, shown in Figure A.3, does not contain any nodes of this sub-reduction.

5 A ion Vaification
60 ANNOT-VERIFY: Sunt

61 ANNOT.VZIRIFY: Processing unnecessary goals (if any)

62 The goal (ON N F) is UNNECESSARY

63 Remove Unnecessary Geal: Pruning the reduction below the node
64 {<7:NDO110>[:GOAL(ONN P)] ...}

65 To take care of this unnecessary goal.

42

e
ol

RO 134 :DUNMY
: R
{NDO 106 DU ',v— L T <AL
R
l_“'_____....._._\ NDU 136 GOAL DA ~ 0737 PHANTOM
?e‘:&g:?’rpj)go“ . (CLEARTCP) }‘—— BN (CLEARTOP L)
¢ R NDO 136 :GOAL > A}D0220 “PHARTOM
LRt N V (CLEARTOPR) (CLEARTOP PY .
W NDO 137 TAGTION D074 PIEMITIV

. E
WL L(PUT-BLOCK-ON-BLOCK L P) PUT -BLOCK ~ON-8LOCK ~AGTION L P)
WV A

. NDO16d DUMMY I P
\ I ML - ,
v N OA o
~ ~
vV |LINDO 156 GOAL ~ AJND0239 PHANTOM
MO0 108 -GOAL | _| LICLEANTOR P) < (GLEARTCP P)
. ~
\
\

' | D058 :GOAL ™ A[N00240 PHXRTOM
¥~ (CLEARTOP Q) {CLEARTOP O} .

' NDO167 TACTION - oy [¥0GZd5 PRMITIVE . i
v 4] (PUT-BLOCK-ON-BLOCK B 0) PUT-BLOCK -ON-BLOCK -ACTION P O}]
7 X

! 173 :DUMMY ’ 7
LRt = ;
NI !

P 0}
. ND076 § PHANTOM
(Nowm YNDO 176 -GOAL ND0Z62 :PHA»{OM
‘t (CLEARTOP M) (CLEARTOP MY} . -
WO 17T AGTION > 1.~ [fO076F PAMITNE ~— T T
{PUT ~BLOCK~ON=BLOCK O M} TPUT -BLOCK~ON-BLOGK=AGTION O M}]
v B 7 / -
’ !
[
NO0263 PHANTOM
.(CLEAATOP M)
ND0264 PHEMTOM
(CLEAHTOP N)* -

NDO197 :Acnoﬁ L 268 :Pmm- SRR
{PUT-BLOCK -ON-BLOCK M N}~ -1 1PUT-BLOCK ~ON-BLOCK -ACTIUN: M-N).-
- A

NOG 110 :GOAL
(ON M N)

N) R - !
- PR [

NDOZ15 :GOAL MO0276 :PHANTOM
(CLEARTOF " N) (CLEARTOP N} . -

~ -
NDO216 :GOAL > 4[ND0276 :PHARTOM

Lwonz PLANTAL b - TCLEARTOP F) [(CLEARTOP F}" . - l
UTRUT NDOZ17 AGTION - ; 207 PRMITVE
£l PUT-BLOCK -ON=-BLOCK ~AGTION N F)

111 :GOAL

£ :
3

(PUT-BLOCK -ON-BLOCK N

Figure A.2. 6BS plan after interpretation

Next, the annotation verification checks for any p-phantom validations. It finds that the
validation supporting the goal On(M ,N) is a p-pnantom validation since On(M ,N) was
achieved through task reduction in the 6BS plan, while it is now true in the initial state of the
new problem situation. PRIAR uses the planner’s goal achievement procedures to check whether
On(M ,N) can now be established from the initial state. As this check is successful, PRIAR
decides to shorten the plan by pruning the validation that is currently supporting the goal

) On(M N), and to support On(M N) by the new fact from the initial state. This pruning will
remove the sub-reduction below the node NDO109: On(M ,N) (see the double-asterisked node
o in Figure A.2) from the interpreted plan. Consequently, the annotation verified plan, shown in

Figure A.3, does not contain any nod=s of this sub-reduction.

43

7“4

o~

i
E"; MO0 154 :CLAVIMY
E,‘ e bl Mg LS ~~ . N

| (PUT-BLOCK -ON-BLOCK O M)

'NDO10G APAGAT | _ o = W= 7 -
LNZL____]‘\ NGO 156 TGOAL =~ ~ _ /0740 PHANTOM
/N3O T95 SGOAL | R (GLEARTOP. O} (CLEARTOP O)
osroy, J N MO0 157 (AGTION BEmas FIOATVE . ;
. A (PUT ~0LOCK -ON-BLOTK P D) 2 X{_{PUT-BLOGK ~ON-BLOCK ~ACTION P 0) .
~ q 3 t
\ ~ ACFIT-TASK0008 :DEPHANTOMICE Al '
\ ~ (CLEARTOP P) P
\ N = = !
1 OO 173 [OUNEaY . ‘
N A T |
\ . NI
\ NOO175 [GOAL] <A "~ A HUIET PRANTOM
(D109 :GOAL |\ - | |(CLEARTOP O) |~ T T L{GEARTOP O) -
[tovom |3 = ~ 4
~ - NO0776 “GOAL SINOOTEZ PHINTOM
WOOTTZ FIANTALT, -~ (CLEARTOP M) L (@eRToe
_:0‘”””” il P SN _{as?n-nsxoooz "FEPLAGE -REDUCTION

REMT-TASK0004 :REPLACE~-REDUGTION
(ON L P) :

Figure A3. 6BS plan after annotation verification

66 ANNOT.VERIFY: Processing p-ph lidations (if any)

67 The goal (ON M N) is supported by & p-ph validati

68 Checking to see if it can be phantomized

69 Check-p-Ph Validation: the condition (ON M N) .

70 can be established from new initial statef!!

71 Check-p-Phantom-Validation: Pruning the other contributor .
T2 {<6::ND02638>(:PRIMITIVE(PUT-BLOCK-ON-BLOCK-ACTION M N)] ...}

K] from the HTN

] Pruning the reduction below the node

kH (<6:NDO109>[-GOAL(ON M N)] ...}

76 To take care of this p-phantom validation 4

After taking care of unnecessary and p-phantom validations, the annotation verification
procedure finds that the validation supporting the filter condition Block (L) is failing, because L
is a Pyramid in the new problem situation. The appropriate repair action is to replace the sub-
reduction below the node which first posted that filter condition. In this case, PRIAR finds that
the node NDO106: On(L ,P), which is an ancestor of the node with the failing filter condition
validation, first posted the filter condition Block(L) into the plan. So it decides to replace the
sub-reduction below this node. Consequently, the annotation verified plan in Figure A.3 con-
tains a refit task REFIT-TASK0004: Achieve [On (L ,P)] in place of the replaced sub-reduction.

77 ANNOT-VERIFY: Processing extra goals (if any)

78 ANNOT-VERIFY: Looking for failed validations..

” The FILTER (wuse-when) candition (BLOCK L) at node

30 {<4:NDO232>(-PRIMITIVE(PUT-BLOCK-ON-BLOCK-ACTION L P)j ...)

81 is failing because of :out fect (BLOCK L) in <INIT-STATE>

82

33 REFIT-FILTER-COND-FAILURE: Adding a refit-task

84 {<REFIT-TASK0004>[:REPLACE-REDUCTION(ON L P)] ...}
85 10 re-reduce the node

86 {<3::NDO106>[:GOAL(ON L P)}...)

87 REFIT-FILTER-COND-FAILURE: Remmoving the replsced reduction from the plan

The annotation verification procedure goes on to find a second failing filier condition
validation and a failing phantom condition validation (lincs 88-105). It repairs them by adding
a second replace reduction refit task and a dephantomize refit task to the annotation-verified
plan. Tigure A.3 shows the partially reduced HTN after the annotation-verification process.
This is then sent to the planner for refitting.

88 The FILTER (use-when) condition (ON O TARLE)

13 at node {<S5:NDO2S1>{:PRIMITIVE(PUT-BLOCX-ON-BLOCK-ACTION O M)] ...} is failing
90 because of :out fact (ON O TABLE) in <INIT-STATE>
91 REFIT-FILTER-COND-FAILURE: Adding a refit-task
92 {<REFTT-TA 5K0002>(:REPLACE-REDUCTION(PUT-BLOCK-ON-BLOCK O M)} ... }
93 o re-reduce the node
94 {<5::ND0176>[:ACTION(PUT-BLOCK-ON-BLOCK O M)) ...}
95 REFIT-FILTER-COND-FAILURE: Removing the replaced reduction from the plan
96 The :PRECOND condition (CLEARTOP P) at node
9 {<4:ND0106> [:PRIMITIVE(PUT-BLOCK-ON-BLOCX-ACTION P 0)]
98 is failing because of :out fact (CLEARTOP P) in <INIT-STATE>
9
100 DEPHANTOMIZE-GOAL: Adding refit-task
101 {<REFIT-TASK0006>[:DEPHANTOMIZE(CLEARTOP P)]...}
102 in the place of the phantom goal
103 {<12:NDO154>[:GOAL(CLEARTOP P)) ...)
104

105 annak-vexify: Entering refit-tasks into the planners TASK-QUEUE in correct order

106 Entering {<REFIT-TASK0004>{:REPLACE-REDUCTION(ON L P)}...}

107 Entering {<REFIT-TASK0002>([:REPLACE-REDUCTION(PUT-BLOCK-ON-BLOCK O M)}...}
108 Entering { <REFIT-TASK0006>{:DEPHANTOMIZE(CLEARTOP P))...}

109 ANNOT.VERIFY: FND

The planner starts by reducing the replace-reduction refit task corresponding to On(L ,P)
(lines 111-129). Since L is a pyramid, the planner finds that the only appropriate schema
instance for reducing this refit task is MAKE.-PYRAMID-ON-BLOCK(L ,P). Next, since the refit
task is a replace-reduction refit task, during installation, PRIAR finds that the e-precondition of
the refit task that was supporting the condition Clear(L), is no longer required by the new
schema instance (the reason being that L, which is a pyramid, is always clear). So the e-
precondition is pruned from the HTN. After this, the planner goes on to reduce the refit task
with the chosen schema. The other two refit tasks are also reduced in turn by a similar process
(lines 135-141).

Figure A.4 shows the result of refitting, which is a completely reduced HTN for solving
the SBP problem. The shaded nodes represent the parts of the 6BS plan that remain applicable
to the 5BP problem, and the white nodes represent the reductions of refit tasks. There is no
separate sub-plan for achieving the goal On(M ,N) in this HTN since this is made true from the
inidal state of SBP problem.

45

Se

1]0 “”“"'“"“""”"’Cllimg C;’fﬂmn\'c n‘rmcr..'ﬂ..Il.'...‘l..'..'....
111 FLANNER: Expanding refit task Achieve [(ON L PV]

112 PLANNEP: The schema choices to reduce the refit trek are:

113 ({SCHO021} MAKE-PYRAMID-ON -RLOCKMI40D{8 (ON L P)

114 BY {<1:ND0C20>{ ACTION(PUT-PYRAMID-ON-BLOCK L P))..}
1S The choser schema 1s ¢

116 [SCHOM1)

117 MAKT-PYRAMID-ON.-BLOCK00140018::(ON L P)

118 Expans:on:

119 0 (<0.NDO19>[:GOAL(CLEARTOD P))}

120 1 {<1:NDO020>[:-ACTION(PUT-PYRAMID-ON-BLOCK L P)]}

2 Cond:tions: 2
12 <<SC5125>> -FRECOND (CLEARTOP P) at 1 from (0)
123 <<SC5126>> :USE-WHEN (PYRAMID L) :a1 0 from (-24)

124 <<SCS127>> :USE-WHEN (BLOCK P) :at 1 :froen (-24)

125 “ o

126 Insta Cholce: Installing the scheme ({SCHO0021}

127 MAKE-PYRAMID-ON-BLOCK00140018::(ON L P) BY

128 {<1:NDOC20>(:ACTION(PUT-PYRAMID-ON-BLOCK L P)] ..}

129 o Re-reduce the task ({<REFIT TASK0004>[:REPLACE-REDUCTION(ON L P)}})

130 The € -precondition (CLEARTOP L) of the task

131 ({<REFIT-TASK0004>[:REPLACE-REDUCTION(ON L P)]})
132 is not required by the chosen schema

133

134 So, pruning the validation corresponding to this ncondition

_ 3 /NOOTE4 -DONDAY
A{‘Jlowa;mmv::l ey LR [Babd : T~<a
-~ NDG156 GOAL RN =~ < AR0074¢ PHANTOM
NDO 108 :GOAL AR (CLEARTOP 0) S . (CLEARTOP O} .
(ON P O) ;L < <

N NOO 157 :ACTION Do e 238 PRINYTIVE & ©
~aA~ (PUT-BLOCK -ON<BLOCK P ©) < T APUT <BLOCK ~ON=BLOCK ~ACTION. P O}

~ L [REFIT-TASK0006 -DEPHANTOMAZE ND0032 PHANTO

sV d(CLEARTOP B) _ - (CLEARTOP P)

" ANOG174 OURRY /o

N "AA - el N ;1

[ROG175 COAL S A S~ L 07T)

R 759 50T _ -I (cteanToe 0y |- <T (CLEARTOP O3 ...

(ON O M) — ~ - :

- 00178 1GOAL ~ ANG0363 Y

O TIZ PONTAC], -~ ~ (GLEARTOP M} < (QLEARTOP M . -
ouTPUT S=XIZcC- TS TASE0002- “FERLACE REDLCTION 028 PFARTIVE .
~ «] (PUT-BLOCK-ON-BLOCX O M) - PUT-BLOCK - ON-BLOCK -ACTION O W) .

NDOO 19 DAL

~ AJNDOO33 PHANTOM ¢
(CLEARTOP p) [~ (CLEARTOP P)
NOO0Z0 -AGTION T~ s 038 :PPRTIVE
(PUT -PYRAMID-ON-BLOCX L P) PUT -PYRAMID-ON-BLOCK -ACTION L P)

REFIT-TASK0004 :REPLACE-REDUCTION
ON L P)

Figure A.4. Result of refitting 6BS plan to SBP problem

136
137
138
19

140
141
142

143
144

145
146
147
148
149
150
151

152
153

155
156

PLANNER: Expending Refit task Achieve [{(PUT BLOCK-ON-BLOCK O M)
FPLANNEN: The schems choices o reduce the refit-task are:
({SCHMN27) PUT-BLOCK-CGN-BLOCKOO2Z2002S (PUT BLOCK-ON Bu. K O M) BY
{<0:NDOC26>[PRIMITIVE(PUT-3LOCK -ON- BLOCK-ACTION O M)}}

PLANNTR: Expanding Refit-task Achieve [(CQEARTOP)}
The refit-task s FHANTOMIZED wath an effect of the node(s)
({<5. NDOO26>{ PRIMITIVE(PUT-BLOCK-ON-DLOCK-ACTION O M)}

®***The Manning s OVER
The plan is...

5: :PRIMITIVE (PUT-BLOCK-ON-BLOCK-ACTION O M) [ire. --'23:(6 15 16)] [Succnodes: (31 4)]
4: :PRIMITIVE (PUT-BLOCK-ON-BLOCK-ACTION P O) [Prenodes:(12 5 13)] {5 des: (23 1))

3: :PRIMITIVE (PUT-PYRAMID-ON-BLOCK-ACTION L P) frenodes:(23 0 5)] {Succnodes: (1))

GOAL STATE
<<SC0062>> PRECOND (ON O M) :at 1 :froen (5)
<<SC0061>> PRECOND (ON P O) :at 1 from (4)
<<SC0060>> FRECOND (ONL P) :t 1 from (3)
«<SC0059>> :PRECOND (ONM N) :at 1 :from (0)

47

Appendix B. The Blocks World Domain Specification

(sctf *autocond* 1)
siAutomatically fill in sub-goals as preconditions of main goal steps x

(opschema make-pyramid-on-block
itedo (on 7x ?y)
:expansion ((stepl :goal (cleartop ?y))
(step2 :action (put-pyramid-on-block 7x ?y)))
torderings ((stepl — step2))
:conditions ((:filter (pyramid ?x) :at stepl)
(:filter (block ?y) :at step2))
seffects ((step2 :delete (cleartop ?y))
(step2 :assert (on 7x ?y)))
:variables (7x ?y))

(opschema make-pyramid-on-table
stedo (on ?x table)
texpansion ((step! :action (put-pyramid-on-table ?x ?y)))
:conditions ((:filter (pyramid ?x) :at stepl))
teffects ((stepl :assert (on ?x table)))
svariables (?x ?y))

(opschema make-block-on-block
stodo (on 7x ?y)
:expansion ((stepl :goal (cleartop 7x)}
(step2 :goal (cieartop ?y))
(step3 :action (put-block-on-block 7x ?y)))
sorderings ((stcpl — step3) (step2 - step3))
:conditions ((:filter (block ?x) :at stepl)
(:filter (block ?y) :at step2))
teffects ((step3 :delete (cleartop ?y))
(step3 :assert (on 2x ?y)))
:variables (?x ?y))

(opschema make-block-on-table ,
stodo (on ?x table) £ P
sexpansion ((stepl :goal (cleartop ?x))

(step2 :action (put-block-on-table ?x table)))
:conditions ((:filter (block 7x) :at stepl))
tordericgs ((stepl — step2))
teftects ((step2 :assert (on ?x table)))
svariables (?x ?y))

(opschema make-clear-table
stodo (cleartop 7x)
texpansion ((stepl :goal (cleartop ?y))
(step2 :action (put-block-on-table ?y table)))
sorderings ((stepl — step2))
:conditions ((:filter (block ?x) :at stepl)
(:filter (block ?y) :at step2)
(:filter (on ?y 7x) :at step2))
teffects ((step2 :assert (cleartop ?x))
(step2 :assert (on ?y table)))

:variables (7x ?y))

(opschema makeclear-block
:todo (cleartop 7x)
:expansion ((stepl :goal (cleartop ?y))
(step2 :action (put-block-on-block 7y ?z)))
corderings ((stepl — step2))
:conditions ((:filter (block ?x) :at stepl)
(:filter (block ?y) :at stepl)
(:filter (block ?z) :at stepl)
(:filter (on 7y ?x) :at step2)
(:filter (cleartop ?z) :at step2)
(:filter (not (equal ?z ?y)) :at stepl)
(:filter (not (equal ?x ?z)) :at stepl))
seffects ((step2 :assert (cleartop 7x))
(step2 :assert (on 7y ?z))
(step2 :delete (cleartop ?z)))
svariables (?x 7y 72))

(actschema put-block-on-block

:todo (put-block-on-block 7x ?y)

:expansion ((stepl :primitive (put-block-on-block-action ?x ?y)))

sconditions ((:filter (block ?x) :at stepl)
(:filter (block ?y) :at stepl)
(:filter (cleartop ?x) :at stepl)
(:filter (cleartop 7y) :at stepl)
(:filtcr (on ?x ?2) :at stepl))

reffects ((stepl :assert (on 7x Ty))
(stepl :assert (cleartop ?z))
(stepl :delete (cleartop ?y))
(stepl :delete (on ?x 7z)))

:variables (7x ?y ?2)

)

(actschema put-pyramid-on-block

:todo (put-pyramid-on-block 7x ?y)

texpansion ((stepl :primitive (put-pyramid-on-block-action ?x ?y)))

:conditions ((:filter (pyramid ?x) :at stepl)
(:filter (block ?y) :at stepl)
(:filter (cleartop ?y) :at stepl)
(:filter (on ?7x ?z) :at stepl))

effects ((stepl :assert (on 7x ?y))
(stepl :assert (cleartop ?z))
(stepl :delete (cleartop ?y))
(stepl :delete (on ?x ?z)))

:variables (7x 7y ?z))

(actschema put-block-on-table
stodo (put-block-on-table ?x table)
sexpansion ((stepl :primitive (put-block-on-table-action ?x table)))
sconditions ((:filter (block 7x) :at stepl)
(:filter (cleartop ?x) :at stepl)
(:filter (un 7x 2z) :at stepl))
effects ((stepl :assert (on 7x table))
(stepl :assert (cleartop ?7z))
(stepl :delete (on ?x ?z)))

49

:variables (?x ?z))

(actschema put-pyramid-on-table
itodo (put-pyramid-on-table 7x table)
:expansion ((stepl :primitive (put-pyramid-on-table-action ?x table)))
sconditions ((:filter (pyramid ?x) -at stepl)
(:filter (on ?7x ?z) :at stepl))
ceffects ((stepl :assert (on ?x table))
(stepl :assert (cleartop ?z))
(stepl :delete (on ?7x ?z)))
:variables (7x 7z))

(domain-axioms
(¢ (cleartop table)
1)
;(cleartop table) is always derivable
(¢ (not (cleartop 7x))
(on 7y 7x)) if 7y is on 7x then ?x cannot be clear
(< (not (on ?other 7x))
(and (block ?x)(on ?z ?x)))
if ?x is a block and ?z is on top of ?x, nothing else is on its top
(¢ (not (on ?z Yother))
(on ?z ?x))
if 2z is on ?x it is not on any other block

(&« (not (on 7x 7y))
(pyramid ?y))
sinothing can be on the top of a pyramid
(e« (equal ?x ?x)
1) ’
»equality axiom)
(closed-world-predicate ’equal :set t)
ssrecord that equality is a closed-world predicate

References

10.

11.

12.

13.

14.

R. Alterman, ‘‘An Adaptive Planner®’, Proceedings of 5th AAAI, 1986, 65-69.

J. G. Carbonell, ‘‘Derivational Analogy and its Role in Problem Solving'’, Proceedings
of AAAI, Washington D.C., 1983, 64-69.

D. Chapman, “‘Planning for Conjunctive Goals”’, Artificial Intelligence 32 (1987), 333-
377.

E. Chamiak and D. McDemmott, ‘‘Chapter 9: Managing Plans of Actions’’, in
Introduction to Artificial Intelligence, Addison-Wesley Publishing Company, 1984, 485-
554.

L. Daniel, ‘‘Planning: Modifying non-linear plans’’, DAI Working paper 24, University
of Edinburgh, December 1977. (Also appears as ‘‘Planning and Operations Research,"’
in Artificial Intelligence: Tools, Techniques and Applications, Harper and Row, New
York, 1983).

R. Fikes, P. Hart and N. Nilsson, ‘‘Learning and Executing Generalized Robot Plans’’,
Artificial Intelligence 3 (1972), 251-288.

S. Ghosh, S. Kambhampati and J. Hendler, “Common Lisp Implementation of a
NONLIN-based hierarchical planner: A User Manual’’, Technical Report (under
preparation), Department of Computer Science, University of Maryland, College Park.

K. J. Hammond, ‘‘CHEF: A Model of Case-Based Planning’’, Proceedings of 5th AAAl,
1986, 267-271.

P. J. Hayes, ‘‘A Representation for Robot Plans'’, Proceedings of 4th IJCAI, 1975.

J. Hendler, A. Tatc and M. Drummond, ‘‘Al Planning: Systems and Techniques'’, A/
Magazine, Summer, 1990 (To appear).

M. N. Huhns and R. D. Acosta, ““ARGO: A System for Design by Analogy®’, IEEE
Expert, Fall 1988, 53-68. (Also appears in Proc. of 4th IEEE Conf. on Appln. of Al,
1988).

S. Kambhampati and J. A. Hendler, ‘‘Adaptation of Plans via Annotation and
Verification™’, Ist Intl. Conf. on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems, 1988, 164-170.

S. Kambhampati, ‘“Flexible Reuse and Modification in Hierarchical Planning: A
Validation Structure Based Approach’, CS-Tech. Rep.-2334, CAR-Tech. Rep.-469,
Center for Automation Research, Department of Computer Science, University of
Maryland, College Park, MD 20742, October 1989. (Ph.D. Dissertation).

S. Kambhampati and J. A. Hendler, ‘‘Flexible Reuse of Plans via Annotation and
Verification, Proceedings of 5th IEEE Conf. on Applications of Artificial Intelligence,

51

15.

16.

17.

18.

19

20.

21.

22.

23,

24,

25.

26.

27.

28.

1989, 37-44.

S. Kambhampati and J. A. Hendler, ‘“Control of Refitting during Plan Reuse'’, 1/th
International Joint Conference on Artificial Intelligence, Detroit, Michigan, USA, August
1989, 943-948.

S. Kambhampati, ‘A Theory of Plan Modification’’, Proceedings of Eighth AAAI,
Boston, MA, 1990.

S. Kambhampati, ‘‘Mapping and Retrieval during Plan Reuse: A Validation-Structure
Based Approach’’, Proceedings of Eighth AAAI, Boston, MA, 1990,

S. Kambhampati, **A Classification of Plan Modification Strategies Based on their
Information Requirements’’, AAAI Spring Symposium on Case-Based Reasoning, March
1990.

S. Kambhampati and J. M. Tenenbaum, ‘‘Towards a Paradigm for Planning in
Interactive Domains with Multiple Spcialized Domain Modules’’, Proceedings of AAAI
workshop on Automated Planning for Complex Domains, Boston, MA, August 1990.

S. Kambhampati, **A Framework for Replanning in Hierarchical Nonlinear Planning"’,
AAAI Spring Symposium on Planning in Uncertain, Unpredictable or Changing
Environments, March 1990. .
S. Kambhampati and A. Philpot, *‘Incremental Planning for Concurrent Product and
Process Design’’, Technical Report (under preparation), Center for Design Research and
Department of Computer Science, Stanford University.

J. L. Kolodner, *‘Case-Based Problem Solving’’, Proceedings of the Fourth International
Workshop on Machine Learning, University of Califomia, Irvine, June 1987, 167-178.

R. Korf, ‘“‘Planning as Search: A Quantitative Approach’’, Artificial Intelligence 33
(1987), 65-88.

P. Morris, R. Feléman and B. Filman, Use of Truth Maintenance in Automatic
Programming, Intellicorp Inc., 1975 El Camino Real West, Mountain View, CA 94040,
March 1990.

E. D. Sacerdoti, A Structure for Plans and Behavior, Elsevier North-Holland, New York,
1977.

R. Simmons and R. Davis, *‘Generate, Test and Debug: Combining Associational Rules
and Causal Models™’, Proceedings of 10th IJCAI 10 (1987), 1071-1078.

R. Simmons, ‘‘A Theory of Debugging Plans and Interpretations’’, Proceedings of 7th-
AAAI 1988, 94-99.

G. J. Sussman, in HACKER: a computational model of skiil acquisition, American
Elsevier, New York, NY, 1977.

52

30.
3L

33.

34,

3s.
36.
37.

A. Tate, ‘‘Project Planning Using a Hicrarchic Non-Lincar Planner'’, Research Report
25, Department of Al, University of Edinburgh, 1976.

A Tate, “‘Generating Project Networks™', Proceedings of Sth IJCAl, 1977, 888-893.

J. Tencnberg, ‘‘Abstraction in Planning’’, Rochester Tech. Rep. 250 (Doctoral
Disscrtation), May 1988.

R. M. Tumer, ‘‘Issues in the Design of Advisory Systems: The Consumer-Advisor
System’’, GIT-ICS-87/19, School of Information and Computer Science, Georgia
Institute of Technology, April 1987.

D. E. Wilkins, ‘‘Domain-independent planning: representation and plan generation’’,
Artificial Intelligence 22 (1984), 269.

D. E. Wilkins, *‘Recovering from execution errors in SIPE*’, Computational intelligence
1 (1985).

D. E. Wilkins, ‘*Causal reasoning in planning”’, Computational Inteliigence 4 (1988).

D. Wikkins, in Practical Planning, Morgan Kaﬁfmann Publishers, Inc., 1989.

Q. Yang, *‘Improving the Efficiency of Planning”’, Doctoral Dissertation, Department of
Computer Science, University of Maryland, College Park, 1989.

53

DATE

12

